

On Optimal Tradeoffs between EFX and Nash Welfare

Tomasz Poniński
with Michal Feldman and Simon Maurus

Tel Aviv University

May 11, 2023

Setting

A resource allocation problem consists of

- ▶ a set of agents $[n] = \{1, \dots, n\}$
- ▶ a set of indivisible goods $M = \{a, b, c, \dots\}$
- ▶ a valuation function $v_i : 2^M \rightarrow \mathbb{R}^{\geq 0}$ for every agent i

Standard assumptions:

- ▶ v_i are normalized $(v_i(\emptyset) = 0)$
- ▶ v_i are monotone $(v_i(A) \leq v_i(B) \text{ for } A \subseteq B)$

We study two classes of valuation functions:

- ▶ additive $(v_i(S) = \sum_{x \in S} v_i(x))$
- ▶ subadditive $(v_i(A \cup B) \leq v_i(A) + v_i(B))$

The goal is to return an allocation $X = (X_1, \dots, X_n)$

- ▶ $X_1, \dots, X_n \subseteq M$ are disjoint subsets of goods
- ▶ X might be **complete** (i.e., $\bigcup_{i \in [n]} X_i = M$) or **partial**

Objective

Which of the following allocations should we choose?

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

- Efficient:

$$\sum v_i(X_i) = 12 + \varepsilon$$

- Not fair:

$$v_2(X_1) = 7 + \varepsilon \text{ and } v_2(X_2) = 3$$

2 strongly envies 1

- Less efficient:

$$\sum v_i(X_i) = 10 + \varepsilon$$

- More fair:

$$v_2(X_1) = 6 + \varepsilon \text{ and } v_2(X_2) = 4$$

The envy is smaller

We are interested in the tradeoffs between efficiency (measured by **Nash welfare**) and fairness (captured by **EFX**).

Fairness

- ▶ An allocation is envy-free (EF) if $v_i(X_i) \geq v_i(X_j)$ for all i and j .
EF is impossible to satisfy in general.
- ▶ An allocation is envy-free up to *any* good (EFX) if

$$v_i(X_i) \geq v_i(X_j \setminus \{g\}) \text{ for } \textit{any } g \in X_j.$$

The existence of EFX is an open problem (no proof for additive valuations, no counter-example for general monotone valuations!)

- ▶ An allocation is envy-free up to *one* good (EF1) if

$$v_i(X_i) \geq v_i(X_j \setminus \{g\}) \text{ for } \textit{some } g \in X_j.$$

EF1 exists for general monotone valuations. [LMMS'04]

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

EF1 but not EFX

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

EFX but not EF

Fairness

- ▶ An allocation is envy-free (EF) if $v_i(X_i) \geq v_i(X_j)$ for all i and j .
EF is impossible to satisfy in general.
- ▶ An allocation is envy-free up to *any* good (**EFX**) if

$$v_i(X_i) \geq v_i(X_j \setminus \{g\}) \text{ for } \textit{any } g \in X_j.$$

The existence of **EFX** is an open problem (no proof for additive valuations, no counter-example for general monotone valuations!)

- ▶ An allocation is envy-free up to *one* good (EF1) if

$$v_i(X_i) \geq v_i(X_j \setminus \{g\}) \text{ for } \textit{some } g \in X_j.$$

EF1 exists for general monotone valuations. [LMMS'04]

- ▶ An allocation is α -**EFX** for $\alpha \in [0, 1]$ if

$$v_i(X_i) \geq \alpha \cdot v_i(X_j \setminus \{g\}) \text{ for } \textit{any } g \in X_j.$$

$\frac{1}{2}$ -**EFX** exists for subadditive valuations. [PR'18]

$(\varphi - 1 \approx 0.618)$ -**EFX** exists for additive valuations. [AMN'20]

Efficiency

Social welfare measures:

- ▶ Utilitarian welfare: $\text{UW}(X) = \sum_{1 \leq i \leq n} v_i(X_i)$
- ▶ Nash welfare: $\text{NW}(X) = \prod_{1 \leq i \leq n} v_i(X_i)^{1/n}$

Why focus on Nash welfare?

- ▶ A maximum Nash welfare (MNW) allocation is more balanced relative to maximum utilitarian welfare allocations.

	<i>a</i>	<i>b</i>
<i>v</i> ₁	2	2
<i>v</i> ₂	1	1

Maximizes utilitarian welfare

	<i>a</i>	<i>b</i>
<i>v</i> ₁	2	2
<i>v</i> ₂	1	1

MNW allocation

- ▶ Nash welfare is *scale-free*.
- ▶ A MNW allocation is EF1. [CKMPSW'16]
- ▶ There is an instance where no EF1 allocation gets more than $O(1/\sqrt{n})$ fraction of maximum utilitarian welfare [BLMS'19] (i.e., the *price of fairness* of EF1 is $\Omega(\sqrt{n})$).

Nash welfare

Definition: $\text{NW}(X) = \prod_{1 \leq i \leq n} v_i(X_i)^{1/n}$

We say that an allocation X is **β -MNW** for $\beta \in [0, 1]$ if

$\text{NW}(X) \geq \beta \cdot \text{maximum Nash welfare.}$

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

$$\text{Nash welfare} = \sqrt{(9 + \varepsilon) \cdot 3}$$

This is a **MNW** allocation.

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

$$\text{Nash welfare} = \sqrt{(6 + \varepsilon) \cdot 4}$$

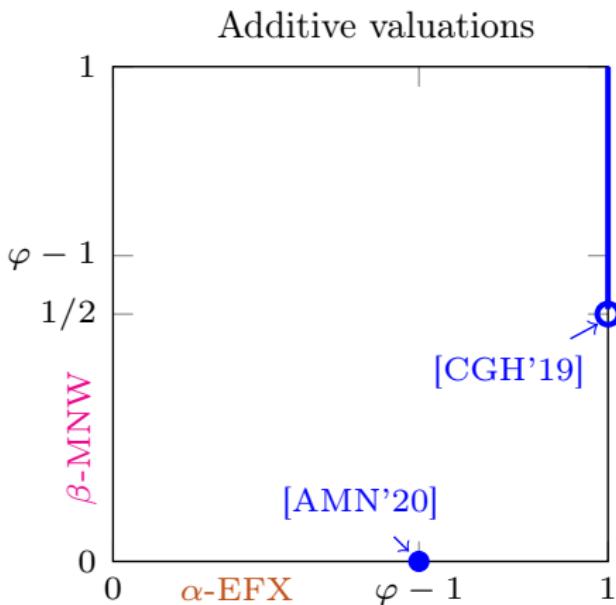
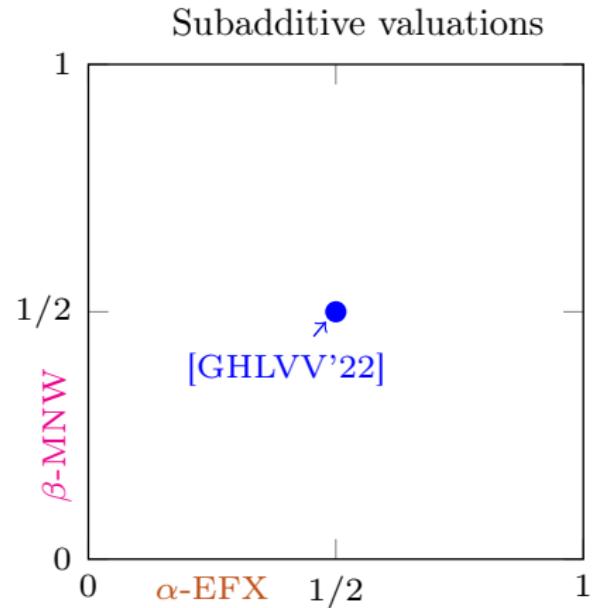
This is a **0.94-MNW** allocation.

What is known about **Nash welfare**:

- ▶ Finding a MNW allocation is NP-hard
- ▶ Poly-time ($e^{1/e} \approx 1.45$)-approx. for additive valuations [BKV'18]
- ▶ Poly-time $(4 + \varepsilon)$ -approx. for submodular valuations [GHLVV'22]

Main results

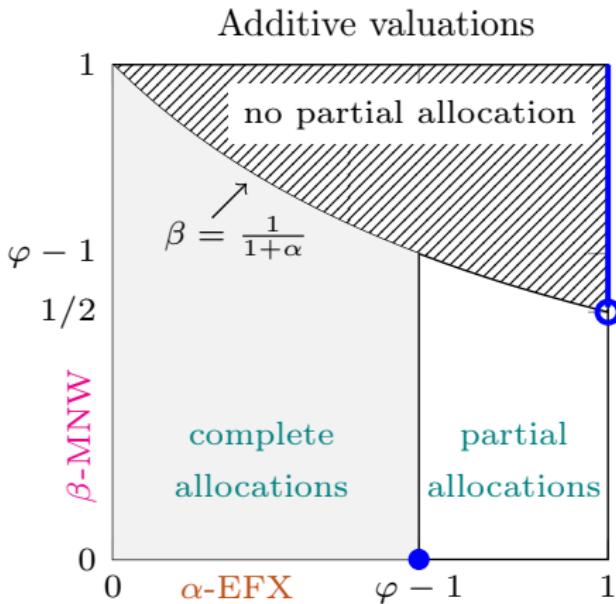
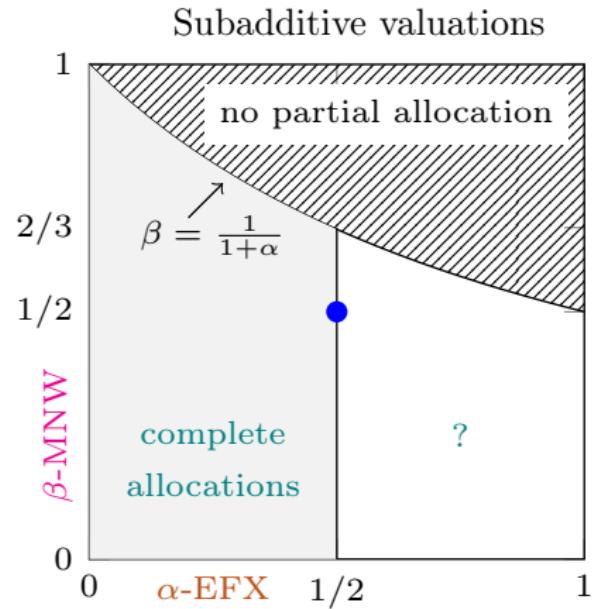
Is there an α -EFX and β -MNW allocation (partial/complete)?



Note that $\varphi - 1 \approx 0.618$.

Main results

Is there an α -EFX and β -MNW allocation (partial/complete)?



Note that $\varphi - 1 \approx 0.618$.

- We provide a new way to construct $(\varphi - 1)$ -EFX for additive.
- We improve $\frac{1}{2}$ -EFX, $\frac{1}{2}$ -MNW to $\frac{1}{2}$ -EFX, $\frac{2}{3}$ -MNW for subadditive.

Proof for additive valuations ($\alpha = 1/2$)

Theorem: Every instance with additive valuations admits a **complete** allocation that is $\frac{1}{2}$ -**EFX** and $\frac{2}{3}$ -**MNW**.

Proof. We analyze a three-stage algorithm:

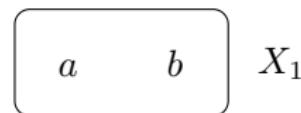
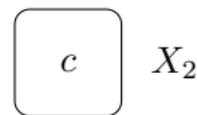
- ▶ Step 1. Start with a **MNW** allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -**EFX** allocation
- ▶ Step 3. Reallocate the removed items to get a **complete** allocation

Consider the running example:

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

1

2



Step 1. We take the **MNW** allocation.

Proof for additive valuations ($\alpha = 1/2$)

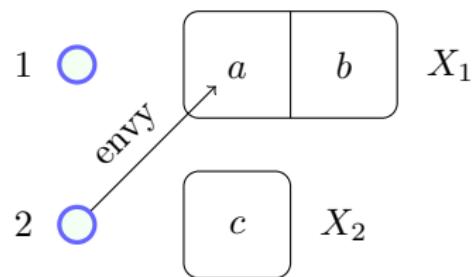
Theorem: Every instance with additive valuations admits a **complete** allocation that is $\frac{1}{2}$ -**EFX** and $\frac{2}{3}$ -**MNW**.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a **MNW** allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -**EFX** allocation
- ▶ Step 3. Reallocate the removed items to get a **complete** allocation

Consider the running example:

		a	b	c
v_1	$6 + \varepsilon$	3	1	
v_2	$6 + \varepsilon$	1	3	



Step 2. The allocation is not $\frac{1}{2}$ -**EFX**.

Proof for additive valuations ($\alpha = 1/2$)

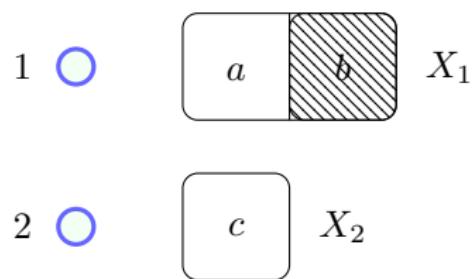
Theorem: Every instance with additive valuations admits a **complete** allocation that is $\frac{1}{2}$ -**EFX** and $\frac{2}{3}$ -**MNW**.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a **MNW** allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -**EFX** allocation
- ▶ Step 3. Reallocate the removed items to get a **complete** allocation

Consider the running example:

		a	b	c
v_1	$6 + \varepsilon$	3	1	
v_2	$6 + \varepsilon$	1	3	



Step 2. Removing b from X_1 gives a **partial**, $\frac{1}{2}$ -**EFX**, $\frac{2}{3}$ -**MNW** alloc.

Proof for additive valuations ($\alpha = 1/2$)

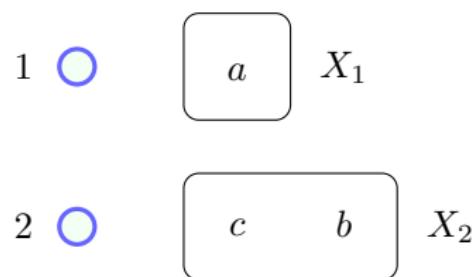
Theorem: Every instance with additive valuations admits a **complete** allocation that is $\frac{1}{2}$ -**EFX** and $\frac{2}{3}$ -**MNW**.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a **MNW** allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -**EFX** allocation
- ▶ Step 3. Reallocate the removed items to get a **complete** allocation

Consider the running example:

		a	b	c
v_1	$6 + \varepsilon$	3	1	
v_2	$6 + \varepsilon$	1	3	

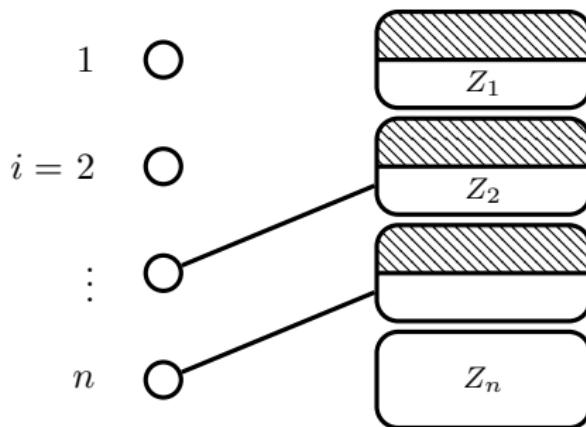


Step 3. Adding b to X_2 gives a **complete**, $\frac{1}{2}$ -**EFX**, $\frac{2}{3}$ -**MNW** alloc.

Proof for additive valuations ($\alpha = 1/2$)

Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation

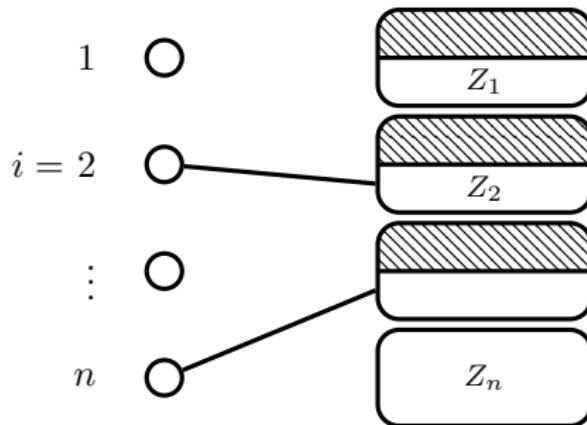
- ▶ Pick an unmatched agent i .
- ▶ If $v_i(Z_i) \geq (1/2) \cdot v_i(Z_j - g)$ for all j and g , then match i to Z_i .



Proof for additive valuations ($\alpha = 1/2$)

Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation

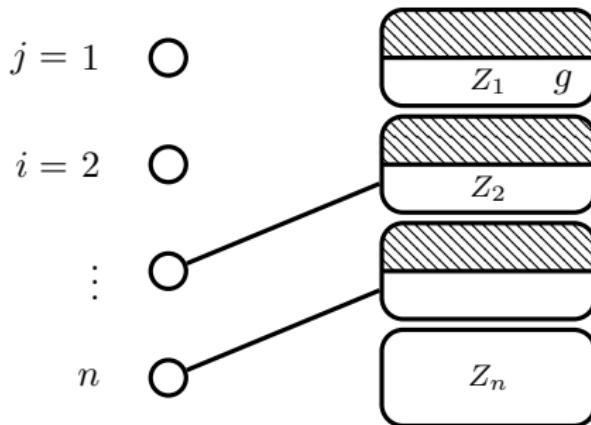
- ▶ Pick an unmatched agent i .
- ▶ If $v_i(Z_i) \geq (1/2) \cdot v_i(Z_j - g)$ for all j and g , then match i to Z_i .



Proof for additive valuations ($\alpha = 1/2$)

Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation

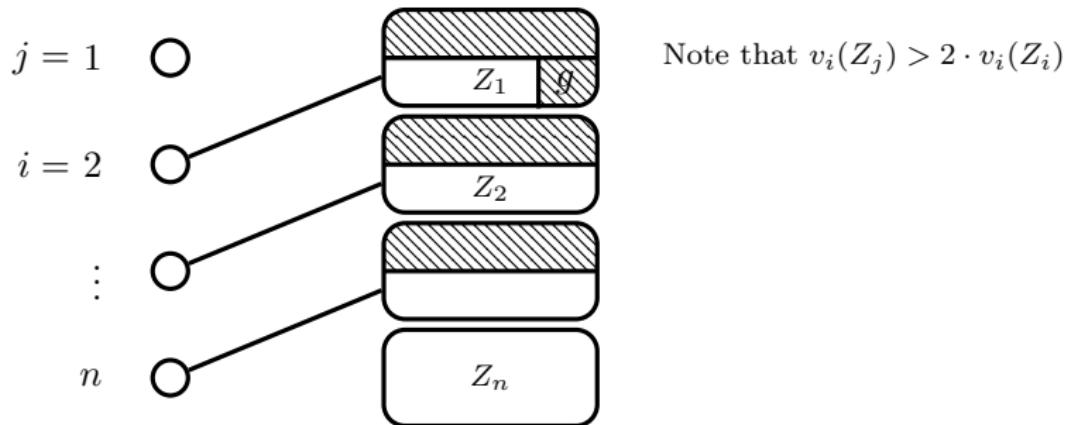
- ▶ Pick an unmatched agent i .
- ▶ If $v_i(Z_i) \geq (1/2) \cdot v_i(Z_j - g)$ for all j and g , then match i to Z_i .
- ▶ Otherwise, pick j and g that maximize $v_i(Z_j - g)$, and then remove g from Z_j and match i to Z_j .



Proof for additive valuations ($\alpha = 1/2$)

Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation

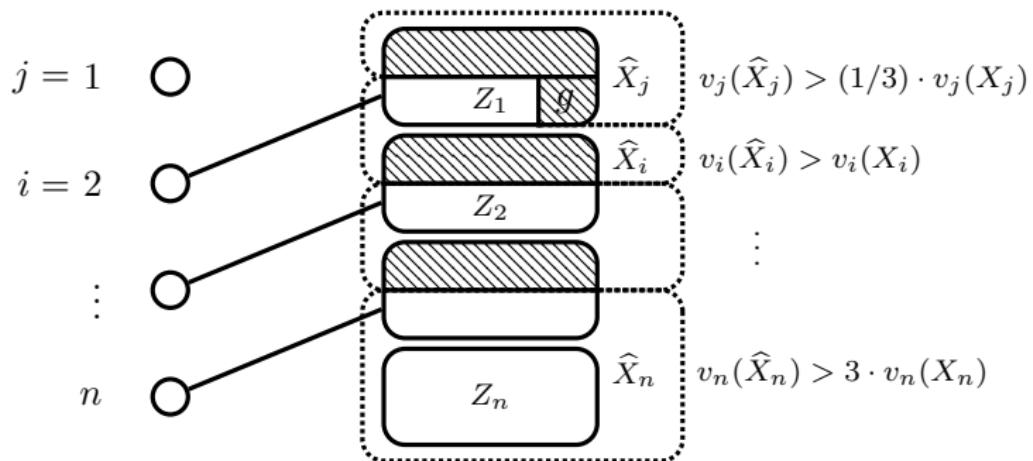
- ▶ Pick an unmatched agent i .
- ▶ If $v_i(Z_i) \geq (1/2) \cdot v_i(Z_j - g)$ for all j and g , then match i to Z_i .
- ▶ Otherwise, pick j and g that maximize $v_i(Z_j - g)$, and then remove g from Z_j and match i to Z_j .



Proof for additive valuations ($\alpha = 1/2$)

Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation

- ▶ Pick an unmatched agent i .
- ▶ If $v_i(Z_i) \geq (1/2) \cdot v_i(Z_j - g)$ for all j and g , then match i to Z_i .
- ▶ Otherwise, pick j and g that maximize $v_i(Z_j - g)$, and then remove g from Z_j and match i to Z_j .



Claim: After every operation, we have $v_j(Z_j) \geq (2/3) \cdot v_j(X_j)$.

Proof. Suppose the contrary holds. We construct an allocation \widehat{X} for which it holds that $\text{NW}(\widehat{X}) > \text{NW}(X)$ which gives a contradiction.

Proof for additive valuations ($\alpha = 1/2$)

Step 3. Reallocate the removed items to get a **complete** allocation

The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

- ▶ If there is an *envy cycle* of agents where each agent prefers the next agent's bundle, then reallocate the bundles along the cycle
- ▶ If there is an *unenvied* agent, give an unallocated item to her

Both operations preserve $\frac{2}{3}$ -MNW.

Lemma: If we start step 3 with a α -EFX and γ -separated allocation, then at the end we obtain a $\min(\alpha, 1/(1 + \gamma))$ -EFX allocation.

An allocation is γ -separated for some $\gamma \in [0, 1]$ if

$$v_i(X_i) \geq (1/\gamma) \cdot v_i(g) \text{ for all unallocated } g.$$

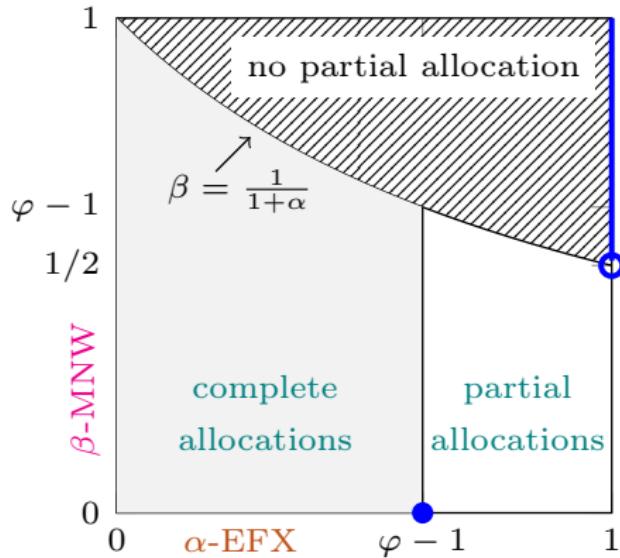
To use the lemma, we show that step 2 guarantees α -separation.

Proof of Lemma. The first operation preserves $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW because the set of allocated bundles remains the same and every agent is weakly better off. For the second operation, observe that

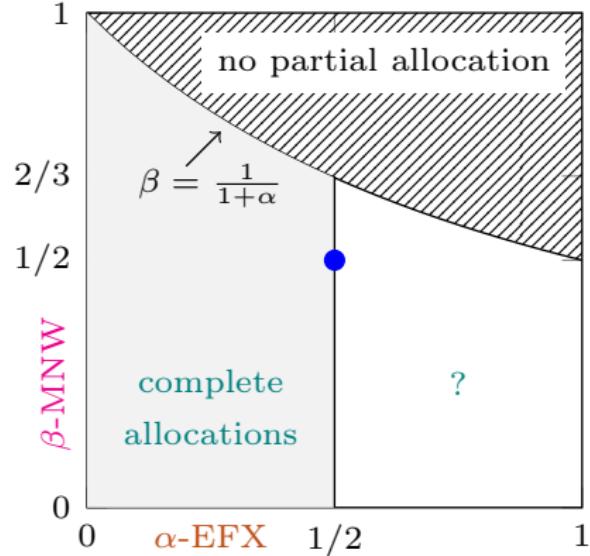
$$v_j(X_i + g) = v_j(X_i) + v_j(g) \leq v_j(X_j) + \gamma \cdot v_j(X_j) = (1 + \gamma) \cdot v_j(X_j).$$

Summary

Additive valuations



Subadditive valuations



- ▶ Fill in the remaining gaps.
- ▶ What about tradeoffs between EF1 and Nash welfare?
For additive, EF1 and **MNW** is possible. [CKMPSW'16]
For subadditive, $\frac{1}{4}$ -EF1 and **MNW** is possible. [WLG'21]
Is EF1 and **β -MNW** possible for subadditive?