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Setting

A resource allocation problem consists of

↭ a set of agents [n] = {1, . . . , n}
↭ a set of indivisible goods M = {a, b, c, . . .}
↭ a valuation function vi : 2M → R→0

for every agent i

Standard assumptions:

↭ vi are normalized (vi(↑) = 0)

↭ vi are monotone (vi(A) ↓ vi(B) for A ↔ B)

We study two classes of valuation functions:

↭ additive (vi(S) =
∑

x↑S vi(x))

↭ subadditive (vi(A ↗B) ↓ vi(A) + vi(B))

The goal is to return an allocation X = (X1, . . . , Xn)

↭ X1, . . . , Xn ↔ M are disjoint subsets of goods

↭ X might be complete (i.e.,
⋃

i↑[n] Xi = M) or partial



Objective

Which of the following allocations should we choose?

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

↭ E!cient:
∑

vi(Xi) = 12 + ω

↭ Not fair:

v2(X1) = 7 + ω and v2(X2) = 3
2 strongly envies 1

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

↭ Less e!cient:
∑

vi(Xi) = 10 + ω

↭ More fair:

v2(X1) = 6 + ω and v2(X2) = 4
The envy is smaller

We are interested in the tradeo"s between e!ciency (measured by

Nash welfare) and fairness (captured by EFX).



Fairness

↭ An allocation is envy-free (EF) if vi(Xi) ↘ vi(Xj) for all i and j.

EF is impossible to satisfy in general.

↭ An allocation is envy-free up to any good (EFX) if

vi(Xi) ↘ vi(Xj \ {g}) for any g ≃ Xj .

The existence of EFX is an open problem (no proof for additive

valuations, no counter-example for general monotone valuations!)

↭ An allocation is envy-free up to one good (EF1) if

vi(Xi) ↘ vi(Xj \ {g}) for some g ≃ Xj .

EF1 exists for general monotone valuations. [LMMS’04]

↭ An allocation is ε-EFX for ε ≃ [0, 1] if

vi(Xi) ↘ ε · vi(Xj \ {g}) for any g ≃ Xj .

1
2 -EFX exists for subadditive valuations. [PR’18]

(ϑ⇐ 1 ⇒ 0.618)-EFX exists for additive valuations. [AMN’20]

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

EF1 but not EFX

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

EFX but not EF
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E"ciency

Social welfare measures:

↭ Utilitarian welfare: UW(X) =
∑

1↓i↓n vi(Xi)

↭ Nash welfare: NW(X) =
∏

1↓i↓n vi(Xi)1/n

Why focus on Nash welfare?

↭ A maximum Nash welfare (MNW) allocation is more balanced

relative to maximum utilitarian welfare allocations.

a b

v1 2 2
v2 1 1

Maximizes utilitarian welfare

a b

v1 2 2
v2 1 1

MNW allocation

↭ Nash welfare is scale-free.
↭ A MNW allocation is EF1. [CKMPSW’16]

↭ There is an instance where no EF1 allocation gets more than

O(1/
⇑
n) fraction of maximum utilitarian welfare [BLMS’19]

(i.e., the price of fairness of EF1 is !(
⇑
n)).



Nash welfare

Definition: NW(X) =
∏

1↓i↓n vi(Xi)1/n

We say that an allocation X is ϖ-MNW for ϖ ≃ [0, 1] if

NW(X) ↘ ϖ · maximum Nash welfare.

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

Nash welfare =
√
(9 + ω) · 3

This is a MNW allocation.

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

Nash welfare =
√
(6 + ω) · 4

This is a 0.94-MNW allocation.

What is known about Nash welfare:

↭ Finding a MNW allocation is NP-hard

↭ Poly-time (e1/e ⇒ 1.45)-approx. for additive valuations [BKV’18]

↭ Poly-time (4 + ω)-approx. for submodular valuations [GHLVV’22]



Main results

Is there an ε-EFX and ϖ-MNW allocation (partial/complete)?

Additive valuations

0 ω ↔ 1 1
0

1/2

ω ↔ 1

1

[CGH’19]

[AMN’20]

ε-EFX

ϑ
-
M

N
W

Subadditive valuations

0 1/2 1
0

1/2

1

[GHLVV’22]

ε-EFX
ϑ
-
M

N
W

Note that ω→ 1 ↑ 0.618.

↭ We provide a new way to construct (ϑ⇐ 1)-EFX for additive.

↭ We improve
1
2 -EFX,

1
2 -MNW to

1
2 -EFX,

2
3 -MNW for subadditive.



Main results

Is there an ε-EFX and ϖ-MNW allocation (partial/complete)?

Additive valuations

0 ω ↔ 1 1
0

1/2

ω ↔ 1

1

no partial allocation

ϑ = 1
1+ω

complete

allocations

partial

allocations

ε-EFX

ϑ
-
M

N
W

Subadditive valuations

0 1/2 1
0

1/2

2/3

1

complete

allocations

?

no partial allocation

ϑ = 1
1+ω

ε-EFX
ϑ
-
M

N
W

Note that ω→ 1 ↑ 0.618.

↭ We provide a new way to construct (ϑ⇐ 1)-EFX for additive.

↭ We improve
1
2 -EFX,

1
2 -MNW to

1
2 -EFX,

2
3 -MNW for subadditive.



Proof for additive valuations (ω = 1/2)

Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:

↭ Step 1. Start with a MNW allocation

↭ Step 2. Shrink some of the bundles to get a
1
2 -EFX allocation

↭ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

b

b

2

1 a

c

X1

X2

X1

X2

Step 1. We take the MNW allocation.



Proof for additive valuations (ω = 1/2)

Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:

↭ Step 1. Start with a MNW allocation

↭ Step 2. Shrink some of the bundles to get a
1
2 -EFX allocation

↭ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3 en

v
y

b

b

2

1 a

c

X1

X2

X1

X2

Step 2. The allocation is not
1
2 -EFX.



Proof for additive valuations (ω = 1/2)

Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:

↭ Step 1. Start with a MNW allocation

↭ Step 2. Shrink some of the bundles to get a
1
2 -EFX allocation

↭ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

b

b

2

1 a

c

X1

X2

X1

X2

Step 2. Removing b from X1 gives a partial,
1
2 -EFX,

2
3 -MNW alloc.



Proof for additive valuations (ω = 1/2)

Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:

↭ Step 1. Start with a MNW allocation

↭ Step 2. Shrink some of the bundles to get a
1
2 -EFX allocation

↭ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

a b c

v1 6 + ω 3 1
v2 6 + ω 1 3

b

b2

1 a

c

X1

X2

X1

X2

Step 3. Adding b to X2 gives a complete,
1
2 -EFX,

2
3 -MNW alloc.



Proof for additive valuations (ω = 1/2)
Step 2. Shrink some of the bundles to get a

1
2 -EFX allocation

↭ Pick an unmatched agent i.

↭ If vi(Zi) ↘ (1/2) · vi(Zj ⇐ g) for all j and g, then match i to Zi.

↭ Otherwise, pick j and g that maximize vi(Zj ⇐ g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

.

.

.

n

Z1

Z2

Zn

g
vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ↘ (2/3) · vj(Xj).

Proof. Suppose the contrary holds. We construct an allocation X̂ for

which it holds that NW(X̂) > NW(X) which gives a contradiction.
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j =
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.

.

n

Z1

Z2

Zn

g
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Proof for additive valuations (ω = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).

↭ If there is an envy cycle of agents where each agent prefers the

next agent’s bundle, then reallocate the bundles along the cycle

↭ If there is an unenvied agent, give an unallocated item to her

Both operations preserve
2
3 -MNW.

Lemma: If we start step 3 with a ε-EFX and ϱ-separated allocation,

then at the end we obtain a min(ε, 1/(1 + ϱ))-EFX allocation.

An allocation is ϱ-separated for some ϱ ≃ [0, 1] if

vi(Xi) ↘ (1/ϱ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees ε-separation.

Proof of Lemma. The first operation preserves
1
2 -EFX and

2
3 -MNW

because the set of allocated bundles remains the same and every

agent is weakly better o". For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ↓ vj(Xj) + ϱ · vj(Xj) = (1 + ϱ) · vj(Xj).



Summary

Additive valuations

0 ω ↔ 1 1
0

1/2

ω ↔ 1

1

no partial allocation

ϑ = 1
1+ω

complete

allocations

partial

allocations

ε-EFX

ϑ
-
M

N
W

Subadditive valuations

0 1/2 1
0

1/2

2/3

1

complete

allocations

?

no partial allocation

ϑ = 1
1+ω

ε-EFX

ϑ
-
M

N
W

↭ Fill in the remaining gaps.

↭ What about tradeo"s between EF1 and Nash welfare?

For additive, EF1 and MNW is possible. [CKMPSW’16]

For subadditive,
1
4 -EF1 and MNW is possible. [WLG’21]

Is EF1 and ϖ-MNW possible for subadditive?


