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client 1 client 2

salesman 1 𝟐 hours 𝟑 hours

salesman 2 𝟏 − 𝝐 hours 𝟐 hours

Setting
Model: Scheduling 𝒏 jobs on 𝒎 unrelated machines

Objective: Minimizing makespan

Makespan = 𝟐 hours



Algorithmic Aspects

Theorem [Lenstra, Shmoys, Tardos, FOCS 1990]:
There exists a 2-approximate polynomial-time algorithm.

Unless P = NP, no polynomial-time algorithm can achieve a 
better than 3/2-approximation.

Scheduling is among the most extensively 

studied problems in computer science.

Can we approximate makespan in polynomial time?



Machine Utilities
Definition: A mechanism (𝑿, 𝒕) is a job allocation to 

machines 𝑿 together with transfers 𝒕 among machines.

client 1 client 2 transfer total cost

salesman 1 𝟐 hours 𝟑 hours ½ hour 𝟐½ hours

salesman 2 𝟏 − 𝝐 hours 𝟐 hours −½ hour 𝟏½ hours

Makespan = 𝟐 hours



Scheduling and Incentives

Theorem [Christodoulou, Koutsoupias, Kovács, STOC 2023]:
Any strategy-proof mechanism is at least 𝒎-approximate.

[Christodoulou, Koutsoupias, Vidali, SODA 2007] [Koutsoupias, Vidali, MFCS 2007] 
[Dobzinski, Shaulker, 2020] [Christodoulou, Koutsoupias, Kovács, FOCS 2022]

Scheduling is a fundamental problem in 

algorithmic mechanism design.

Theorem [Nisan, Ronen, STOC 1999]:
There exists an 𝒎-approximate strategy-proof mechanism.

How well can a strategy-proof mechanism approximate makespan?



[Hartline, Ieong, Mu’alem, Schapira, Zohar, ADT 2009]

Scheduling and Fairness
Our Main Focus: 

Can we ensure fairness for machines?

Theorem [Cohen, Feldman, Fiat, Kaplan, Olonetsky, EC 2010]:
There exists an O(log𝒎)-approximate envy-free mechanism.

How well can an envy-free mechanism approximate makespan?

[Aragones, 1995] [Halpern, Shah, SAGT 2019] [Brustle, Dippel, Narayan, Suzuki, Vetta, EC 2020]
[Barman, Krishna, Narahari, Sadhukhan, IJCAI 2022] [Caragiannis, Ioannidis, WINE 2022] 
[Goko, Igarashi, Kawase, Makino, Sumita, Tamura, Yokoi, Yokoo, AAMAS 2022] 
[Choo, Ling, Suksompong, Teh, Zhang, ORL 2024] [Wu, Zhang, Zhou, WINE 2024]

Mechanisms with transfers resemble fair division with subsidy. 



Envy-Freeness

client 1 client 2 transfer total cost

salesman 1 𝟐 hours 𝟑 hours ½ hour 𝟐½ hours

salesman 2 𝟏 − 𝝐 hours 𝟐 hours −½ hour 𝟏½ hours

Salesman 2 envies salesman 1 since: 𝟐 – ½ > (𝟏 − 𝝐) + ½.

Definition: A mechanism (𝑿, 𝒕) is envy-free if  

𝒄𝒊 𝑿𝒊 + 𝒕𝒊 ≤ 𝒄𝒊 𝑿𝒋 + 𝒕𝒋 for any machines 𝒊, 𝒋 ∈ [𝒎] 



Envy-Freeness
Definition: A mechanism (𝑿, 𝒕) is envy-free if  

𝒄𝒊 𝑿𝒊 + 𝒕𝒊 ≤ 𝒄𝒊 𝑿𝒋 + 𝒕𝒋 for any machines 𝒊, 𝒋 ∈ [𝒎] 

Theorem [Cohen, Feldman, Fiat, Kaplan, Olonetsky, EC 2010]:
Any envy-free mechanism is at least 
𝛀(log𝒎 / log log𝒎)-approximate.

Are there fairness notions that allow a 
constant-factor approximation to optimal makespan?



Proportionality

client 1 client 2 transfer total cost prop. share

salesman 1 𝟐 hours 𝟑 hours ½ hour 𝟐½ hours 𝟐½ hours

salesman 2 𝟏 − 𝝐 
hours 𝟐 hours −½ hour 𝟏½ hours 𝟏½− 𝝐/𝟐 

hours

Definition: A mechanism (𝑿, 𝒕) is proportional if  

𝒄𝒊 𝑿𝒊 + 𝒕𝒊 ≤ (𝟏/𝒎) 3 𝒄𝒊 [𝒏]  for any machine 𝒊 ∈ [𝒎] 

Salesman 2’s total cost exceeds the proportionality threshold.



Proportionality

The 𝟑/𝟐-approximation is tight.

Next slides:
•  A 3/2 lower bound for any proportional mechanism.
•  Characterization of proportionable allocations.
•  A 3/2 upper bound via the Anti-Diagonal Mechanism.

Main Theorem: There exists a proportional mechanism 

that achieves a 𝟑/𝟐-approximation to makespan.



Proportionality
Theorem: The 3/2-approximation ratio is tight.

No because: (𝟐 + 𝒕) + (𝟐 − 𝒕) > 𝟐½ + (𝟏½− 𝝐/𝟐).

client 1 client 2 transfer total cost prop. share

salesman 1 𝟐 hours 𝟑 hours 𝒕 hours 𝟐 + 𝒕 hours 𝟐½ hours

salesman 2 𝟏 − 𝝐 
hours 𝟐 hours −𝒕 hours 𝟐 − 𝒕 hours 𝟏½− 𝝐/𝟐 

hours

Is the optimal allocation below proportionable?



Characterization of Proportionality

Theorem: An allocation is proportionable
if and only if it is mean-efficient. 

In words: The sum of processing times is at most 
the sum of proportional shares.

Definition: An allocation is mean-efficient if

6
𝒊∈[𝒎]

𝒄𝒊 𝑿𝒊 ≤6
𝒊∈[𝒎]

𝒄𝒊 𝒏
𝒎



Anti-Diagonal Mechanism
Main Theorem: There exists a proportional mechanism 

that achieves a 𝟑/𝟐-approximation to makespan.

1. Assume WLOG the diagonal allocation minimizes makespan.
(optimal makespan but may violate proportionability)

2. Choose the cost-minimizing anti-diagonal.
(proportionable but may increase makespan)

3. Adjust allocation via merge and swap operations. 
(proportionable with near-optimal makespan)

Anti-Diagonal Allocation Merge Operation Swap Operation



Normalized Instances
Definition: An instance is normalized if
(𝟏/𝒎) 3 𝒄𝒊 𝒏 = 𝟏 for every machine 𝒊.

Theorem: There exists a proportional mechanism for 
normalized instances that achieves optimal makespan.



Conclusion

Can you achieve a constant-factor approximation of 

optimal makespan under alternative fairness notions?

Possibilities: EF1/EFX or (𝟏 − 𝝐)-EF with transfers.

The technique used to obtain the 𝛀(log𝒎 / log log𝒎)
lower bound for EF does not extend to (𝟏 − 𝝐)-EF.

See the paper for details.

Proportionality allows a 3/2-approximation.
Envy-freeness requires a 𝛀(log𝒎 / log log𝒎)-approx.


