Proportionally Fair Makespan Approximation

Tomek Ponitka

Tel Aviv University

Joint work with

Michal Feldman Tel Aviv University Microsoft ILDC

Jugal Garg

University of Illinois

Urbana-Champaign

Vishnu V. Narayan University of Illinois Urbana-Champaign

Setting

Model: Scheduling n jobs on m unrelated machines Objective: Minimizing makespan

		client 1	client 2
	salesman 1	2 hours	3 hours
	salesman 2	$1 - \epsilon$ hours	2 hours

Makespan = 2 hours

Algorithmic Aspects

Scheduling is among the most extensively studied problems in computer science.

Can we approximate makespan in polynomial time?

Theorem [Lenstra, Shmoys, Tardos, FOCS 1990]: There exists a 2-approximate polynomial-time algorithm. Unless P = NP, no polynomial-time algorithm can achieve a better than 3/2-approximation.

Machine Utilities

Definition: A mechanism (X, t) is a job allocation to machines X together with transfers t among machines.

	client 1	client 2	transfer	total cost
salesman 1	2 hours	3 hours	½ hour	2 ¹ / ₂ hours
salesman 2	$1 - \epsilon$ hours	2 hours	–½ hour	1½ hours

Makespan = 2 hours

Scheduling and Incentives

Scheduling is a fundamental problem in algorithmic mechanism design.

How well can a strategy-proof mechanism approximate makespan?

Theorem [Nisan, Ronen, STOC 1999]: There exists an *m*-approximate strategy-proof mechanism.

Theorem [Christodoulou, Koutsoupias, Kovács, STOC 2023]: Any strategy-proof mechanism is at least *m*-approximate.

[Christodoulou, Koutsoupias, Vidali, SODA 2007] [Koutsoupias, Vidali, MFCS 2007] [Dobzinski, Shaulker, 2020] [Christodoulou, Koutsoupias, Kovács, FOCS 2022]

Scheduling and Fairness

Our Main Focus:

Can we ensure fairness for machines?

Mechanisms with transfers resemble fair division with subsidy.

[Aragones, 1995] [Halpern, Shah, SAGT 2019] [Brustle, Dippel, Narayan, Suzuki, Vetta, EC 2020] [Barman, Krishna, Narahari, Sadhukhan, IJCAI 2022] [Caragiannis, Ioannidis, WINE 2022] [Goko, Igarashi, Kawase, Makino, Sumita, Tamura, Yokoi, Yokoo, AAMAS 2022] [Choo, Ling, Suksompong, Teh, Zhang, ORL 2024] [Wu, Zhang, Zhou, WINE 2024]

How well can an envy-free mechanism approximate makespan?

Theorem [Cohen, Feldman, Fiat, Kaplan, Olonetsky, EC 2010]: There exists an $O(\log m)$ -approximate envy-free mechanism.

[Hartline, leong, Mu'alem, Schapira, Zohar, ADT 2009]

Envy-Freeness

Definition: A mechanism (X, t) is envy-free if

 $c_i(X_i) + t_i \le c_i(X_j) + t_j$ for any machines $i, j \in [m]$

	client 1	client 2	transfer	total cost
salesman 1	2 hours	3 hours	½ hour	2½ hours
salesman 2	$1 - \epsilon$ hours	2 hours	–½ hour	1½ hours

Salesman 2 envies salesman 1 since: $2 - \frac{1}{2} > (1 - \epsilon) + \frac{1}{2}$.

Envy-Freeness

Definition: A mechanism (X, t) is envy-free if

 $c_i(X_i) + t_i \le c_i(X_j) + t_j$ for any machines $i, j \in [m]$

Theorem [Cohen, Feldman, Fiat, Kaplan, Olonetsky, EC 2010]: Any envy-free mechanism is at least $\Omega(\log m / \log \log m)$ -approximate.

Are there fairness notions that allow a **constant-factor** approximation to optimal makespan?

Proportionality

Definition: A mechanism (X, t) is proportional if

 $c_i(X_i) + t_i \leq (1/m) \cdot c_i([n])$ for any machine $i \in [m]$

	client 1	client 2	transfer	total cost	prop. share
salesman 1	2 hours	3 hours	½ hour	2 ¹ / ₂ hours	2 ¹ / ₂ hours
salesman 2	1 – ε hours	2 hours	−½ hour	1½ hours	1½ – ε/2 hours

Salesman 2's total cost exceeds the proportionality threshold.

Proportionality

Main Theorem: There exists a proportional mechanism that achieves a 3/2-approximation to makespan.

The 3/2-approximation is tight.

Next slides:

- A 3/2 lower bound for any proportional mechanism.
- Characterization of proportionable allocations.
- A 3/2 upper bound via the Anti-Diagonal Mechanism.

Proportionality

Theorem: The 3/2-approximation ratio is tight.

Is the optimal allocation below proportionable?

	client 1	client 2	transfer	total cost	prop. share
salesman 1	2 hours	3 hours	t hours	2 + <i>t</i> hours	2 ¹ / ₂ hours
salesman 2	$1-\epsilon$ hours	2 hours	-t hours	2 – <i>t</i> hours	1½ – ε/2 hours

No because: $(2 + t) + (2 - t) > 2\frac{1}{2} + (1\frac{1}{2} - \frac{\epsilon}{2})$.

Characterization of Proportionality

Definition: An allocation is mean-efficient if a = a ([m])

$$\sum_{i\in[m]} c_i(X_i) \leq \sum_{i\in[m]} \frac{c_i([n])}{m}$$

In words: The sum of processing times is at most the sum of proportional shares.

Theorem: An allocation is proportionable if and only if it is mean-efficient.

Anti-Diagonal Mechanism

Main Theorem: There exists a proportional mechanism that achieves a 3/2-approximation to makespan.

 Assume WLOG the diagonal allocation minimizes makespan. (optimal makespan but may violate proportionability)
Choose the cost-minimizing anti-diagonal. (proportionable but may increase makespan)
Adjust allocation via merge and swap operations. (proportionable with near-optimal makespan)

Merge Operation

Swap Operation

Normalized Instances

Definition: An instance is normalized if $(1/m) \cdot c_i([n]) = 1$ for every machine *i*.

Theorem: There exists a proportional mechanism for normalized instances that achieves optimal makespan.

Conclusion

Proportionality allows a 3/2-approximation. Envy-freeness requires a $\Omega(\log m / \log \log m)$ -approx.

Can you achieve a constant-factor approximation of optimal makespan under alternative fairness notions?

Possibilities: EF1/EFX or $(1 - \epsilon)$ -EF with transfers.

The technique used to obtain the $\Omega(\log m / \log \log m)$ lower bound for EF does not extend to $(1 - \epsilon)$ -EF.

See the paper for details.