On Optimal Tradeoffs between
EFX and Nash Welfare

Tomasz Ponitka

with Michal Feldman and Simon Mauras

Tel Aviv University

May 11, 2023

Setting

A resource allocation problem consists of

> a set of agents [n] = {1,...,n}

> a set of indivisible goods M = {a,b,¢,...}
oM

» a valuation function v; — R20 for every agent i

Setting

A resource allocation problem consists of

> a set of agents [n] = {1,...,n}

> a set of indivisible goods M = {a,b,¢,...}
oM

» a valuation function v; — R20 for every agent i

Standard assumptions:
» ; are normalized (v;()) = 0)
» v; are monotone (v;(A) < wv;(B) for A C B)

Setting

A resource allocation problem consists of

> a set of agents [n] = {1,...,n}

> a set of indivisible goods M = {a,b,¢,...}
2M

» a valuation function v; : — R20 for every agent i

Standard assumptions:
» v, are normalized (v;(()) = 0)
» v; are monotone (v;(A) < wv;(B) for A C B)

We study two classes of valuation functions:

> additive (0i(S) = D opegvi(®))
» subadditive (vi(AU B) < v;(A) +vi(B))

Setting

A resource allocation problem consists of

> a set of agents [n] = {1,...,n}

> a set of indivisible goods M = {a,b,¢,...}
2M

» a valuation function v; : — R20 for every agent i

Standard assumptions:
» v, are normalized (v;(()) = 0)
» v; are monotone (v;(A) < wv;(B) for A C B)

We study two classes of valuation functions:

> additive (0i(S) = D opegvi(®))
» subadditive (vi(AU B) < v;(A) +vi(B))

The goal is to return an allocation X = (X1,...,X,)
> X,...., X, € M are disjoint subsets of goods
» X might be complete (i.e., UiE[n] X; = M) or partial

Objective

Which of the following allocations should we choose?

L [o b]
V1 6+¢ 3 1
vy | 64+ 1 3

H \Ga i”

Objective

Which of the following allocations should we choose?

L [o b]
V1 6+¢ 3 1
vy | 64+ 1 3
» Efficient:

» Not fair:

v2(X1) =7+ ¢ and v2(X2) =3

2 strongly envies 1

L [« b]
V1 6+¢ 3 1
vy | 64+ 1 3

Objective

Which of the following allocations should we choose?

L [o b] L [« b]
V1 6+¢ 3 1 V1 6+¢ 3 1
vy | 64+ 1 3 vy | 64+ 1 3
» Efficient: » Less efficient:
ZUL(X-L) =12+¢ Z’UZ(Xz) =10+¢
» Not fair: » More fair:
v2(X1) =7+ ¢ and v2(X2) =3 v2(X1) =6+ ¢ and v2(X2) =4

2 strongly envies 1 The envy is smaller

Objective

Which of the following allocations should we choose?

L [o b] L [& b]
v | 64+ 3 1 v |64+ 3 1
vy | 64+ 1 3 vy | 64+ 1 3
» Efficient: » Less efficient:
Zvi(Xi)IIQ—‘rS Z’UZ(Xz) =10+¢
» Not fair: » More fair:
v2(X1) =7+ ¢ and v2(X2) =3 v2(X1) =6+ ¢ and v2(X2) =4
2 strongly envies 1 The envy is smaller

We are interested in the tradeoffs between efficiency (measured by
Nash welfare) and fairness (captured by EFX).

Fairness

» An allocation is envy-free (EF) if v;(X;) > v;(X;) for all ¢ and j.

EF is impossible to satisfy in general.

Fairness

» An allocation is envy-free (EF) if v;(X;) > v;(X;) for all ¢ and j.
EF is impossible to satisfy in general.
> An allocation is envy-free up to any good (EFX) if
v;(X;) > v (X5 \ {g}) for any g € X;.

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

Fairness

» An allocation is envy-free (EF) if v;(X;) > v;(X;) for all ¢ and j.
EF is impossible to satisfy in general.
> An allocation is envy-free up to any good (EFX) if
v;(X;) > v (X5 \ {g}) for any g € X;.

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

» An allocation is envy-free up to one good (EF1) if
v; (X)) > vi(X; \ {g}) for some g € Xj.

EF1 exists for general monotone valuations. [LMMS'04]

Fairness

» An allocation is envy-free (EF) if v;(X;) > v;(X;) for all ¢ and j.
EF is impossible to satisfy in general.
> An allocation is envy-free up to any good (EFX) if
v;(X;) > v (X5 \ {g}) for any g € X;.

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

» An allocation is envy-free up to one good (EF1) if
v; (X)) > vi(X; \ {g}) for some g € Xj.

EF1 exists for general monotone valuations. [LMMS'04]

L [o b] L [& b ¢
vy |64+ 3 1 vy |64+ 3 1
v | 64+ 1 3 vo | 64+ 1 3

EF1 but not EFX EFX but not EF

Fairness

» An allocation is envy-free (EF) if v;(X;) > v;(X;) for all ¢ and j.
EF is impossible to satisfy in general.
> An allocation is envy-free up to any good (EFX) if
v;(X;) > v (X5 \ {g}) for any g € X;.

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

» An allocation is envy-free up to one good (EF1) if
v; (X)) > vi(X; \ {g}) for some g € Xj.
EF1 exists for general monotone valuations. [LMMS’04]
» An allocation is a-EFX for a € [0, 1] if
v (X;) > a - v (X; \ {g}) for any g € X;.
5-EFX exists for subadditive valuations. [PR'18]
(p — 1~ 0.618)-EFX exists for additive valuations. [AMN'20]

Efficiency

Social welfare measures:
> Utilitarian welfare: UW(X) =3, vi(Xi)
> Nash welfare: NW(X) = [], <., vi(X:)¥/"

Efficiency

Social welfare measures:
> Utilitarian welfare: UW(X) =3, vi(Xi)
> Nash welfare: NW(X) = [], <., vi(X:)¥/"

Why focus on Nash welfare?

Efficiency

Social welfare measures:
> Utilitarian welfare: UW(X) = Zlgign v;(X;)
> Nash welfare: NW(X) = [T, <, v:(Xi)'/"

Why focus on Nash welfare?

» A maximum Nash welfare (MNW) allocation is more balanced

relative to maximum utilitarian welfare allocations.

U1

2 2

V2

1 1

Maximizes utilitarian welfare

U1

2 2

V2

11

MNW allocation

Efficiency

Social welfare measures:
> Utilitarian welfare: UW(X) = Zlgign v;(X;)
> Nash welfare: NW(X) =[], <<, v (X;)H/™
Why focus on Nash welfare?

» A maximum Nash welfare (MNW) allocation is more balanced
relative to maximum utilitarian welfare allocations.

(%1 2 2 U1 2 2
vy |1 1 v | 1 1
Maximizes utilitarian welfare MNW allocation

» Nash welfare is scale-free.

Efficiency

Social welfare measures:
> Utilitarian welfare: UW(X) = Zlgign v;(X;)
> Nash welfare: NW(X) = [T, <, v:(Xi)'/"
Why focus on Nash welfare?

» A maximum Nash welfare (MNW) allocation is more balanced
relative to maximum utilitarian welfare allocations.

(%1 2 2 U1 2 2
vy |1 1 v | 1 1
Maximizes utilitarian welfare MNW allocation

» Nash welfare is scale-free.

> A MNW allocation is EF1. [CKMPSW'16]

Efficiency

Social welfare measures:
> Utilitarian welfare: UW(X) = Zlgign v;(X;)
> Nash welfare: NW(X) = [T, <, v:(Xi)'/"
Why focus on Nash welfare?

» A maximum Nash welfare (MNW) allocation is more balanced
relative to maximum utilitarian welfare allocations.

(%1 2 2 U1 2 2
vy |1 1 v | 1 1
Maximizes utilitarian welfare MNW allocation

» Nash welfare is scale-free.
» A MNW allocation is EF1. [CKMPSW'16]
» There is an instance where no EF1 allocation gets more than

O(1/+/n) fraction of maximum utilitarian welfare [BLMS'19]
(i.e., the price of fairness of EF1 is Q(y/n)).

Nash welfare

Definition: NW(X) = ngign vy (X;)/m

Nash welfare

Definition: NW(X) = H1§ign vy (X;)/m

We say that an allocation X is S-MNW for § € [0, 1] if
NW(X) > - maximum Nash welfare.

Nash welfare

Definition: NW(X) = H1§ign vy (X;)/m

We say that an allocation X is S-MNW for § € [0, 1] if
NW(X) > - maximum Nash welfare.

[| o ® <] [| a b <]

V1 6+¢ 3 1 V1 6+¢ 3 1

vg |64+ 1 3 vg | 6+ 1 3
Nash welfare = \/(9+¢) -3 Nash welfare = /(6 +¢) - 4

This is a MNW allocation. This is a 0.94-MNW allocation.

Nash welfare

Definition: NW(X) = H1§ign vy (X;)/m

We say that an allocation X is S-MNW for § € [0, 1] if
NW(X) > - maximum Nash welfare.

L [« b] L [« b <]
v |64+ 3 1 vy |64+ 3 1
vy | 64+ 1 3 vy | 64+ 1 3
Nash welfare = \/(9+¢) -3 Nash welfare = /(6 +¢) - 4
This is a MNW allocation. This is a 0.94-MNW allocation.

What is known about Nash welfare:
» Finding a MNW allocation is NP-hard
> Poly-time (e!/¢ ~ 1.45)-approx. for additive valuations [BKV'18]
» Poly-time (4 + ¢)-approx. for submodular valuations [GHLVV'22]

Main results

Is there an o-EFX and 5-MNW allocation (partial/complete)?

Main results

Is there an o-EFX and 5-MNW allocation (partial/complete)?

Additive valuations

-1 f
1/2 | o 12
- [CGH’19] =
z. Z,
= =
. [AMN’20] =
0 e 0

0 a-EFX -1 1

Note that ¢ — 1 ~ 0.618.

Subadditive valuations

[GHLVV’22]

0

a-EFX

1/2

Main results
Is there an o-EFX and 5-MNW allocation (partial/complete)?

Additive valuations Subadditive valuations

1 77777777777777777777777777 77777777777 77777 1 T
52550 ’
2277, no partial allocation 7
% ’
000000000000000000000000000000000

YIII7777777777772777777772772777)
Ry 7

e —1

—_
~
[\v]
—_
~
[\

T

~

[J

[GHLVV’22]
complete partial

=
z
=
Q

allocations allocations

o B-MNW

0

L 4
0 «a-EFX p—1 1 0 o-EFX 1/2

Note that ¢ — 1 ~ 0.618.

Main results

Is there an o-EFX and 5-MNW allocation (partial/complete)?

Additive valuations

1 77777777777777777
7077
7

e —1

complete

=
z
=
Q

allocations

0

7777777777777777777777
N Y
7770

partial

allocations

®
0 oEFX o—1

Note that ¢ — 1 ~ 0.618.

_
~
[\)

o B-MNW

Subadditive valuations

[GHLVV’22]

a-EFX 1/2

» We provide a new way to construct (¢ — 1)-EFX for additive.

e —1

Main results

Is there an o-EFX and 5-MNW allocation (partial/complete)?

Additive valuations

1 777777777777777777 777777777777 7777777777
A s
70

NN

2272 no partial allocation

7

Ry

oy
L7777777777777777777

NANNNNNNN

NN

complete partial

=
z
=
Q

allocations allocations

0

0 a-EFX

Note that ¢ — 1 ~ 0.618.

L 4
p—1 1

2/3

o B-MNW

Subadditive valuations

AR a0y,
1005507 vy

77777, 7|
7777

722: no partial allocation 7

complete ?

allocations

a-EFX 1/2 1

» We provide a new way to construct (¢ — 1)-EFX for additive.

Main results
Is there an o-EFX and 5-MNW allocation (partial/complete)?

Additive valuations Subadditive valuations

1 77777777777777777777777777 77777777777 77777 1 R
A A Y, 1000500 7
s ’ 15000 . . y

500 : : y 1500 ;
2222 no partial allocation 7 722 no partial allocation 7
i Y s ;

’ A | .
000000000000000000000000000000000) S
0000000000000005004550455055555 000500050000005000500550045070

e —1

2500 252
200 2

0050000550000550000550000 : A
1 177777777777777727777777) 2/3 777777777777

$55000055000055000057 1 2550000550002050005%

8 =-—— B=1ia

14+« oy 70000000070077

1500555000055 150005550000

3550025527 2550000758

Wy ey

1/2 2§ 1/2 ® 2

é complete partial complete ?
1
Q.

allocations allocations allocations

o B-MNW

0

@
0 «-EFX p—1 1 0 o-EFX 1/2 1

Note that ¢ — 1 ~ 0.618.

» We provide a new way to construct (¢ — 1)-EFX for additive.
» We improve %—EFX, %—MNW to %—EFX, %—MNW for subadditive.

Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.

Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:

Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:

» Step 1. Start with a MNW allocation

Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete

allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:
» Step 1. Start with a MNW allocation

» Step 2. Shrink some of the bundles to get a %—EFX allocation

Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:

» Step 1. Start with a MNW allocation

» Step 2. Shrink some of the bundles to get a %—EFX allocation

» Step 3. Reallocate the removed items to get a complete allocation

Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:

» Step 1. Start with a MNW allocation

» Step 2. Shrink some of the bundles to get a %—EFX allocation

» Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

Proof for additive valuations (o = 1/2)
Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:
» Step 1. Start with a MNW allocation
» Step 2. Shrink some of the bundles to get a %—EFX allocation

> Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

C
v 6+¢ 3 1
3

vy | 64+ 1

Step 1. We take the MNW allocation.

Proof for additive valuations (o = 1/2)
Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:
» Step 1. Start with a MNW allocation
» Step 2. Shrink some of the bundles to get a %—EFX allocation

> Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

[o] b |
v 6+¢ 3 1
vp | 6+ 1 3

X

Step 2. The allocation is not %-EFX.

Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:

» Step 1. Start with a MNW allocation

» Step 2. Shrink some of the bundles to get a %—EFX allocation

» Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

L [e b]
v 6+¢ 3 1
vp | 6+ 1 3

2 0O c | Xo

Step 2. Removing b from X gives a partial, %-EFX7 %-MNVV' alloc.

Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete

allocation that is %—EFX and %—MNW.

Proof. We analyze a three-stage algorithm:
» Step 1. Start with a MNW allocation
» Step 2. Shrink some of the bundles to get a %—EFX allocation

» Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

v 6+¢ 3 1
vy |6+ 1 3
2 O X2

Step 3. Adding b to X5 gives a complete, %-EFX, %—MNVV alloc.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

O O O O

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.
> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.
> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation
» Pick an unmatched agent i.
> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.

> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.

> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.

> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

Note that v;(Z;) > 2 - v;(Z;)

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.

> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

Claim: After every operation, we have v;(Z;) > (2/3) - v;(Xj).
Proof. Suppose the contrary holds. We construct an allocation X for
which it holds that NW(X) > NW(X) which gives a contradiction.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.

> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

Claim: After every operation, we have v;(Z;) > (2/3) - v;(Xj).
Proof. Suppose the contrary holds. We construct an allocation X for
which it holds that NW(X) > NW(X) which gives a contradiction.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation
» Pick an unmatched agent i.
> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

7=l X v (Xj) > (1/3) - v (X;)
=2 3 Xi 0 (X)) > vi(X5)
n

Claim: After every operation, we have v;(Z;) > (2/3) - v;(Xj).
Proof. Suppose the contrary holds. We construct an allocation X for
which it holds that NW(X) > NW(X) which gives a contradiction.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation
» Pick an unmatched agent i.
> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

7=l X v (Xj) > (1/3) - v (X;)
=2 3 X 0 (X)) > vi(X5)
n

Claim: After every operation, we have v;(Z;) > (2/3) - v;(Xj).
Proof. Suppose the contrary holds. We construct an allocation X for
which it holds that NW(X) > NW(X) which gives a contradiction.

Proof for additive valuations (o = 1/2)
Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.

> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

v (X5) > (1/3) - v;(X;)

o SEEDA

Claim: After every operation, we have v;(Z;) > (2/3) - v;(Xj).
Proof. Suppose the contrary holds. We construct an allocation X for
which it holds that NW(X) > NW(X) which gives a contradiction.

Proof for additive valuations (o = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

Proof for additive valuations (o = 1/2)
Step 3. Reallocate the removed items to get a complete allocation
The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

» If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle

Proof for additive valuations (o = 1/2)
Step 3. Reallocate the removed items to get a complete allocation
The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

» If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle
> If there is an unenvied agent, give an unallocated item to her

Proof for additive valuations (o = 1/2)
Step 3. Reallocate the removed items to get a complete allocation
The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

» If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle
> If there is an unenvied agent, give an unallocated item to her

. 2 2\
Both operations preserve -MNW.

Proof for additive valuations (o = 1/2)
Step 3. Reallocate the removed items to get a complete allocation
The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

» If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle
> If there is an unenvied agent, give an unallocated item to her

Both operations preserve %—MNVV.

Lemma: If we start step 3 with a a-EFX and ~-separated allocation,
then at the end we obtain a min(«, 1/(1 + ~))-EFX allocation.

An allocation is v-separated for some v € [0, 1] if

v;(X;) > (1/7) - vi(g) for all unallocated g.

Proof for additive valuations (o = 1/2)
Step 3. Reallocate the removed items to get a complete allocation
The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

» If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle
> If there is an unenvied agent, give an unallocated item to her

Both operations preserve %—MNVV.

Lemma: If we start step 3 with a a-EFX and ~-separated allocation,
then at the end we obtain a min(«, 1/(1 + ~))-EFX allocation.

An allocation is v-separated for some v € [0, 1] if
v;(X;) > (1/7) - vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees a-separation.

Proof for additive valuations (o = 1/2)
Step 3. Reallocate the removed items to get a complete allocation
The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

» If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle
> If there is an unenvied agent, give an unallocated item to her

. 2 2\
Both operations preserve -MNW.

Lemma: If we start step 3 with a a-EFX and ~-separated allocation,
then at the end we obtain a min(«, 1/(1 + ~))-EFX allocation.

An allocation is v-separated for some v € [0, 1] if
v;(X;) > (1/7) - vi(g) for all unallocated g.
To use the lemma, we show that step 2 guarantees a-separation.

Proof of Lemma. The first operation preserves %—EF‘ X and %-MNVV
because the set of allocated bundles remains the same and every
agent is weakly better off.

Proof for additive valuations (o = 1/2)
Step 3. Reallocate the removed items to get a complete allocation
The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

» If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle
> If there is an unenvied agent, give an unallocated item to her

. 2 2\
Both operations preserve -MNW.

Lemma: If we start step 3 with a a-EFX and ~-separated allocation,
then at the end we obtain a min(«, 1/(1 + ~))-EFX allocation.

An allocation is v-separated for some v € [0, 1] if
v;(X;) > (1/7) - vi(g) for all unallocated g.
To use the lemma, we show that step 2 guarantees a-separation.

Proof of Lemma. The first operation preserves %—EF‘ X and %-MNVV
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vi(Xi +9) = v;(Xe) +05(9) <v;(X5) +7-0;(X;) = (L +7) - v;(X;).

Summary

Additive valuations

e —1
1/2

B-MNW

o

complete

allocations

Y L

R Y

partial

allocations

0

a-EFX

@
p—1 1

2/3

1/2

o B-MNW

Subadditive valuations

7
:
/22 no partial allocation /
:

SILILIIIIIIIIIIIIIII I III 10007

complete ?

allocations

0 o-EFX 1/2 1

Summary

Additive valuations Subadditive valuations
S) V ez
Nf::: no partial allocation / 2%, no partial allocation
2/3
e —1 2 /
1/2 h1/2
é complete partial é complete ?
Y allocations allocations @ allocations
0 @ 0
0 a-EFX p—1 1 0 a-EFX 1/2 1

» Fill in the remaining gaps.

Summary

e —1
1/2

B-MNW

Additive valuations

complete

allocations

partial

allocations

0
0 a-EFX

@
p—1 1

» Fill in the remaining gaps.

» What about tradeoffs between EF1 and Nash welfare?
For additive, EF1 and MNW is possible. [CKMPSW'16]

For subadditive,

2/3

1/2

o B-MNW

Subadditive valuations

oIttt

7
:
7 :
7, no partial allocation
:

20 1010070700707707007070070700707%

complete ?

allocations

0 a-EFX

Is EF1 and S-MNW possible for subadditive?

1/2

1-EF1 and MNW is possible. [WLG'21]

