
On Optimal Tradeoffs between
EFX and Nash Welfare

Tomasz Ponitka
with Michal Feldman and Simon Mauras

Tel Aviv University

May 11, 2023



Setting
A resource allocation problem consists of
▶ a set of agents [n] = {1, . . . , n}
▶ a set of indivisible goods M = {a, b, c, . . .}
▶ a valuation function vi : 2

M → R≥0 for every agent i

Standard assumptions:
▶ vi are normalized (vi(∅) = 0)
▶ vi are monotone (vi(A) ≤ vi(B) for A ⊆ B)

We study two classes of valuation functions:
▶ additive (vi(S) =

∑
x∈S vi(x))

▶ subadditive (vi(A ∪B) ≤ vi(A) + vi(B))

The goal is to return an allocation X = (X1, . . . , Xn)

▶ X1, . . . , Xn ⊆ M are disjoint subsets of goods
▶ X might be complete (i.e.,

⋃
i∈[n] Xi = M) or partial



Setting
A resource allocation problem consists of
▶ a set of agents [n] = {1, . . . , n}
▶ a set of indivisible goods M = {a, b, c, . . .}
▶ a valuation function vi : 2

M → R≥0 for every agent i

Standard assumptions:
▶ vi are normalized (vi(∅) = 0)
▶ vi are monotone (vi(A) ≤ vi(B) for A ⊆ B)

We study two classes of valuation functions:
▶ additive (vi(S) =

∑
x∈S vi(x))

▶ subadditive (vi(A ∪B) ≤ vi(A) + vi(B))

The goal is to return an allocation X = (X1, . . . , Xn)

▶ X1, . . . , Xn ⊆ M are disjoint subsets of goods
▶ X might be complete (i.e.,

⋃
i∈[n] Xi = M) or partial



Setting
A resource allocation problem consists of
▶ a set of agents [n] = {1, . . . , n}
▶ a set of indivisible goods M = {a, b, c, . . .}
▶ a valuation function vi : 2

M → R≥0 for every agent i

Standard assumptions:
▶ vi are normalized (vi(∅) = 0)
▶ vi are monotone (vi(A) ≤ vi(B) for A ⊆ B)

We study two classes of valuation functions:
▶ additive (vi(S) =

∑
x∈S vi(x))

▶ subadditive (vi(A ∪B) ≤ vi(A) + vi(B))

The goal is to return an allocation X = (X1, . . . , Xn)

▶ X1, . . . , Xn ⊆ M are disjoint subsets of goods
▶ X might be complete (i.e.,

⋃
i∈[n] Xi = M) or partial



Setting
A resource allocation problem consists of
▶ a set of agents [n] = {1, . . . , n}
▶ a set of indivisible goods M = {a, b, c, . . .}
▶ a valuation function vi : 2

M → R≥0 for every agent i

Standard assumptions:
▶ vi are normalized (vi(∅) = 0)
▶ vi are monotone (vi(A) ≤ vi(B) for A ⊆ B)

We study two classes of valuation functions:
▶ additive (vi(S) =

∑
x∈S vi(x))

▶ subadditive (vi(A ∪B) ≤ vi(A) + vi(B))

The goal is to return an allocation X = (X1, . . . , Xn)

▶ X1, . . . , Xn ⊆ M are disjoint subsets of goods
▶ X might be complete (i.e.,

⋃
i∈[n] Xi = M) or partial



Objective

Which of the following allocations should we choose?

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

▶ Efficient:∑
vi(Xi) = 12 + ε

▶ Not fair:
v2(X1) = 7 + ε and v2(X2) = 3

2 strongly envies 1

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

▶ Less efficient:∑
vi(Xi) = 10 + ε

▶ More fair:
v2(X1) = 6 + ε and v2(X2) = 4

The envy is smaller

We are interested in the tradeoffs between efficiency (measured by
Nash welfare) and fairness (captured by EFX).



Objective

Which of the following allocations should we choose?

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

▶ Efficient:∑
vi(Xi) = 12 + ε

▶ Not fair:
v2(X1) = 7 + ε and v2(X2) = 3

2 strongly envies 1

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

▶ Less efficient:∑
vi(Xi) = 10 + ε

▶ More fair:
v2(X1) = 6 + ε and v2(X2) = 4

The envy is smaller

We are interested in the tradeoffs between efficiency (measured by
Nash welfare) and fairness (captured by EFX).



Objective

Which of the following allocations should we choose?

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

▶ Efficient:∑
vi(Xi) = 12 + ε

▶ Not fair:
v2(X1) = 7 + ε and v2(X2) = 3

2 strongly envies 1

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

▶ Less efficient:∑
vi(Xi) = 10 + ε

▶ More fair:
v2(X1) = 6 + ε and v2(X2) = 4

The envy is smaller

We are interested in the tradeoffs between efficiency (measured by
Nash welfare) and fairness (captured by EFX).



Objective

Which of the following allocations should we choose?

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

▶ Efficient:∑
vi(Xi) = 12 + ε

▶ Not fair:
v2(X1) = 7 + ε and v2(X2) = 3

2 strongly envies 1

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

▶ Less efficient:∑
vi(Xi) = 10 + ε

▶ More fair:
v2(X1) = 6 + ε and v2(X2) = 4

The envy is smaller

We are interested in the tradeoffs between efficiency (measured by
Nash welfare) and fairness (captured by EFX).



Fairness

▶ An allocation is envy-free (EF) if vi(Xi) ≥ vi(Xj) for all i and j.
EF is impossible to satisfy in general.

▶ An allocation is envy-free up to any good (EFX) if

vi(Xi) ≥ vi(Xj \ {g}) for any g ∈ Xj .

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

▶ An allocation is envy-free up to one good (EF1) if

vi(Xi) ≥ vi(Xj \ {g}) for some g ∈ Xj .

EF1 exists for general monotone valuations. [LMMS’04]
▶ An allocation is α-EFX for α ∈ [0, 1] if

vi(Xi) ≥ α · vi(Xj \ {g}) for any g ∈ Xj .

1
2 -EFX exists for subadditive valuations. [PR’18]

(φ− 1 ≈ 0.618)-EFX exists for additive valuations. [AMN’20]



Fairness

▶ An allocation is envy-free (EF) if vi(Xi) ≥ vi(Xj) for all i and j.
EF is impossible to satisfy in general.

▶ An allocation is envy-free up to any good (EFX) if

vi(Xi) ≥ vi(Xj \ {g}) for any g ∈ Xj .

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

▶ An allocation is envy-free up to one good (EF1) if

vi(Xi) ≥ vi(Xj \ {g}) for some g ∈ Xj .

EF1 exists for general monotone valuations. [LMMS’04]
▶ An allocation is α-EFX for α ∈ [0, 1] if

vi(Xi) ≥ α · vi(Xj \ {g}) for any g ∈ Xj .

1
2 -EFX exists for subadditive valuations. [PR’18]

(φ− 1 ≈ 0.618)-EFX exists for additive valuations. [AMN’20]



Fairness

▶ An allocation is envy-free (EF) if vi(Xi) ≥ vi(Xj) for all i and j.
EF is impossible to satisfy in general.

▶ An allocation is envy-free up to any good (EFX) if

vi(Xi) ≥ vi(Xj \ {g}) for any g ∈ Xj .

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

▶ An allocation is envy-free up to one good (EF1) if

vi(Xi) ≥ vi(Xj \ {g}) for some g ∈ Xj .

EF1 exists for general monotone valuations. [LMMS’04]

▶ An allocation is α-EFX for α ∈ [0, 1] if

vi(Xi) ≥ α · vi(Xj \ {g}) for any g ∈ Xj .

1
2 -EFX exists for subadditive valuations. [PR’18]

(φ− 1 ≈ 0.618)-EFX exists for additive valuations. [AMN’20]



Fairness

▶ An allocation is envy-free (EF) if vi(Xi) ≥ vi(Xj) for all i and j.
EF is impossible to satisfy in general.

▶ An allocation is envy-free up to any good (EFX) if

vi(Xi) ≥ vi(Xj \ {g}) for any g ∈ Xj .

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

▶ An allocation is envy-free up to one good (EF1) if

vi(Xi) ≥ vi(Xj \ {g}) for some g ∈ Xj .

EF1 exists for general monotone valuations. [LMMS’04]

▶ An allocation is α-EFX for α ∈ [0, 1] if

vi(Xi) ≥ α · vi(Xj \ {g}) for any g ∈ Xj .

1
2 -EFX exists for subadditive valuations. [PR’18]

(φ− 1 ≈ 0.618)-EFX exists for additive valuations. [AMN’20]

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

EF1 but not EFX

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

EFX but not EF



Fairness

▶ An allocation is envy-free (EF) if vi(Xi) ≥ vi(Xj) for all i and j.
EF is impossible to satisfy in general.

▶ An allocation is envy-free up to any good (EFX) if

vi(Xi) ≥ vi(Xj \ {g}) for any g ∈ Xj .

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

▶ An allocation is envy-free up to one good (EF1) if

vi(Xi) ≥ vi(Xj \ {g}) for some g ∈ Xj .

EF1 exists for general monotone valuations. [LMMS’04]
▶ An allocation is α-EFX for α ∈ [0, 1] if

vi(Xi) ≥ α · vi(Xj \ {g}) for any g ∈ Xj .

1
2 -EFX exists for subadditive valuations. [PR’18]

(φ− 1 ≈ 0.618)-EFX exists for additive valuations. [AMN’20]



Efficiency
Social welfare measures:
▶ Utilitarian welfare: UW(X) =

∑
1≤i≤n vi(Xi)

▶ Nash welfare: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

Why focus on Nash welfare?

▶ A maximum Nash welfare (MNW) allocation is more balanced
relative to maximum utilitarian welfare allocations.

a b

v1 2 2
v2 1 1

Maximizes utilitarian welfare

a b

v1 2 2
v2 1 1

MNW allocation

▶ Nash welfare is scale-free.
▶ A MNW allocation is EF1. [CKMPSW’16]
▶ There is an instance where no EF1 allocation gets more than

O(1/
√
n) fraction of maximum utilitarian welfare [BLMS’19]

(i.e., the price of fairness of EF1 is Ω(
√
n)).



Efficiency
Social welfare measures:
▶ Utilitarian welfare: UW(X) =

∑
1≤i≤n vi(Xi)

▶ Nash welfare: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

Why focus on Nash welfare?

▶ A maximum Nash welfare (MNW) allocation is more balanced
relative to maximum utilitarian welfare allocations.

a b

v1 2 2
v2 1 1

Maximizes utilitarian welfare

a b

v1 2 2
v2 1 1

MNW allocation

▶ Nash welfare is scale-free.
▶ A MNW allocation is EF1. [CKMPSW’16]
▶ There is an instance where no EF1 allocation gets more than

O(1/
√
n) fraction of maximum utilitarian welfare [BLMS’19]

(i.e., the price of fairness of EF1 is Ω(
√
n)).



Efficiency
Social welfare measures:
▶ Utilitarian welfare: UW(X) =

∑
1≤i≤n vi(Xi)

▶ Nash welfare: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

Why focus on Nash welfare?
▶ A maximum Nash welfare (MNW) allocation is more balanced

relative to maximum utilitarian welfare allocations.

a b

v1 2 2
v2 1 1

Maximizes utilitarian welfare

a b

v1 2 2
v2 1 1

MNW allocation

▶ Nash welfare is scale-free.
▶ A MNW allocation is EF1. [CKMPSW’16]
▶ There is an instance where no EF1 allocation gets more than

O(1/
√
n) fraction of maximum utilitarian welfare [BLMS’19]

(i.e., the price of fairness of EF1 is Ω(
√
n)).



Efficiency
Social welfare measures:
▶ Utilitarian welfare: UW(X) =

∑
1≤i≤n vi(Xi)

▶ Nash welfare: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

Why focus on Nash welfare?
▶ A maximum Nash welfare (MNW) allocation is more balanced

relative to maximum utilitarian welfare allocations.

a b

v1 2 2
v2 1 1

Maximizes utilitarian welfare

a b

v1 2 2
v2 1 1

MNW allocation

▶ Nash welfare is scale-free.

▶ A MNW allocation is EF1. [CKMPSW’16]
▶ There is an instance where no EF1 allocation gets more than

O(1/
√
n) fraction of maximum utilitarian welfare [BLMS’19]

(i.e., the price of fairness of EF1 is Ω(
√
n)).



Efficiency
Social welfare measures:
▶ Utilitarian welfare: UW(X) =

∑
1≤i≤n vi(Xi)

▶ Nash welfare: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

Why focus on Nash welfare?
▶ A maximum Nash welfare (MNW) allocation is more balanced

relative to maximum utilitarian welfare allocations.

a b

v1 2 2
v2 1 1

Maximizes utilitarian welfare

a b

v1 2 2
v2 1 1

MNW allocation

▶ Nash welfare is scale-free.
▶ A MNW allocation is EF1. [CKMPSW’16]

▶ There is an instance where no EF1 allocation gets more than
O(1/

√
n) fraction of maximum utilitarian welfare [BLMS’19]

(i.e., the price of fairness of EF1 is Ω(
√
n)).



Efficiency
Social welfare measures:
▶ Utilitarian welfare: UW(X) =

∑
1≤i≤n vi(Xi)

▶ Nash welfare: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

Why focus on Nash welfare?
▶ A maximum Nash welfare (MNW) allocation is more balanced

relative to maximum utilitarian welfare allocations.

a b

v1 2 2
v2 1 1

Maximizes utilitarian welfare

a b

v1 2 2
v2 1 1

MNW allocation

▶ Nash welfare is scale-free.
▶ A MNW allocation is EF1. [CKMPSW’16]
▶ There is an instance where no EF1 allocation gets more than

O(1/
√
n) fraction of maximum utilitarian welfare [BLMS’19]

(i.e., the price of fairness of EF1 is Ω(
√
n)).



Nash welfare

Definition: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

We say that an allocation X is β-MNW for β ∈ [0, 1] if

NW(X) ≥ β · maximum Nash welfare.

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

Nash welfare =
√
(9 + ε) · 3

This is a MNW allocation.

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

Nash welfare =
√
(6 + ε) · 4

This is a 0.94-MNW allocation.

What is known about Nash welfare:
▶ Finding a MNW allocation is NP-hard
▶ Poly-time (e1/e ≈ 1.45)-approx. for additive valuations [BKV’18]
▶ Poly-time (4 + ε)-approx. for submodular valuations [GHLVV’22]



Nash welfare

Definition: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

We say that an allocation X is β-MNW for β ∈ [0, 1] if

NW(X) ≥ β · maximum Nash welfare.

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

Nash welfare =
√
(9 + ε) · 3

This is a MNW allocation.

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

Nash welfare =
√
(6 + ε) · 4

This is a 0.94-MNW allocation.

What is known about Nash welfare:
▶ Finding a MNW allocation is NP-hard
▶ Poly-time (e1/e ≈ 1.45)-approx. for additive valuations [BKV’18]
▶ Poly-time (4 + ε)-approx. for submodular valuations [GHLVV’22]



Nash welfare

Definition: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

We say that an allocation X is β-MNW for β ∈ [0, 1] if

NW(X) ≥ β · maximum Nash welfare.

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

Nash welfare =
√
(9 + ε) · 3

This is a MNW allocation.

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

Nash welfare =
√
(6 + ε) · 4

This is a 0.94-MNW allocation.

What is known about Nash welfare:
▶ Finding a MNW allocation is NP-hard
▶ Poly-time (e1/e ≈ 1.45)-approx. for additive valuations [BKV’18]
▶ Poly-time (4 + ε)-approx. for submodular valuations [GHLVV’22]



Nash welfare

Definition: NW(X) =
∏

1≤i≤n vi(Xi)
1/n

We say that an allocation X is β-MNW for β ∈ [0, 1] if

NW(X) ≥ β · maximum Nash welfare.

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

Nash welfare =
√
(9 + ε) · 3

This is a MNW allocation.

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

Nash welfare =
√
(6 + ε) · 4

This is a 0.94-MNW allocation.

What is known about Nash welfare:
▶ Finding a MNW allocation is NP-hard
▶ Poly-time (e1/e ≈ 1.45)-approx. for additive valuations [BKV’18]
▶ Poly-time (4 + ε)-approx. for submodular valuations [GHLVV’22]



Main results
Is there an α-EFX and β-MNW allocation (partial/complete)?

Note that φ− 1 ≈ 0.618.

▶ We provide a new way to construct (φ− 1)-EFX for additive.
▶ We improve 1

2 -EFX, 1
2 -MNW to 1

2 -EFX, 2
3 -MNW for subadditive.



Main results
Is there an α-EFX and β-MNW allocation (partial/complete)?

Additive valuations

0 φ − 1 1
0

1/2

φ − 1

1

[CGH’19]

[AMN’20]

α-EFX

β
-M

N
W

Subadditive valuations

0 1/2 1
0

1/2

1

[GHLVV’22]

α-EFX
β
-M

N
W

Note that φ− 1 ≈ 0.618.

▶ We provide a new way to construct (φ− 1)-EFX for additive.
▶ We improve 1

2 -EFX, 1
2 -MNW to 1

2 -EFX, 2
3 -MNW for subadditive.



Main results
Is there an α-EFX and β-MNW allocation (partial/complete)?

Additive valuations

0 φ − 1 1
0

1/2

φ − 1

1

no partial allocation

β = 1
1+α

complete

allocations

partial

allocations

α-EFX

β
-M

N
W

Subadditive valuations

0 1/2 1
0

1/2

1

[GHLVV’22]

α-EFX
β
-M

N
W

Note that φ− 1 ≈ 0.618.

▶ We provide a new way to construct (φ− 1)-EFX for additive.
▶ We improve 1

2 -EFX, 1
2 -MNW to 1

2 -EFX, 2
3 -MNW for subadditive.



Main results
Is there an α-EFX and β-MNW allocation (partial/complete)?

Additive valuations

0 φ − 1 1
0

1/2

φ − 1

1

no partial allocation

β = 1
1+α

complete

allocations

partial

allocations

α-EFX

β
-M

N
W

Subadditive valuations

0 1/2 1
0

1/2

1

[GHLVV’22]

α-EFX
β
-M

N
W

Note that φ− 1 ≈ 0.618.

▶ We provide a new way to construct (φ− 1)-EFX for additive.

▶ We improve 1
2 -EFX, 1

2 -MNW to 1
2 -EFX, 2

3 -MNW for subadditive.



Main results
Is there an α-EFX and β-MNW allocation (partial/complete)?

Additive valuations

0 φ − 1 1
0

1/2

φ − 1

1

no partial allocation

β = 1
1+α

complete

allocations

partial

allocations

α-EFX

β
-M

N
W

Subadditive valuations

0 1/2 1
0

1/2

2/3

1

complete

allocations
?

no partial allocation

β = 1
1+α

α-EFX
β
-M

N
W

Note that φ− 1 ≈ 0.618.

▶ We provide a new way to construct (φ− 1)-EFX for additive.

▶ We improve 1
2 -EFX, 1

2 -MNW to 1
2 -EFX, 2

3 -MNW for subadditive.



Main results
Is there an α-EFX and β-MNW allocation (partial/complete)?

Additive valuations

0 φ − 1 1
0

1/2

φ − 1

1

no partial allocation

β = 1
1+α

complete

allocations

partial

allocations

α-EFX

β
-M

N
W

Subadditive valuations

0 1/2 1
0

1/2

2/3

1

complete

allocations
?

no partial allocation

β = 1
1+α

α-EFX
β
-M

N
W

Note that φ− 1 ≈ 0.618.

▶ We provide a new way to construct (φ− 1)-EFX for additive.
▶ We improve 1

2 -EFX, 1
2 -MNW to 1

2 -EFX, 2
3 -MNW for subadditive.



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Step 3. Reallocate the removed items to get a complete allocation

b

b

X1

X2

X1

X2



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:

▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Step 3. Reallocate the removed items to get a complete allocation

b

b

X1

X2

X1

X2



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:
▶ Step 1. Start with a MNW allocation

▶ Step 2. Shrink some of the bundles to get a 1
2 -EFX allocation

▶ Step 3. Reallocate the removed items to get a complete allocation

b

b

X1

X2

X1

X2



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:
▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation

▶ Step 3. Reallocate the removed items to get a complete allocation

b

b

X1

X2

X1

X2



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:
▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Step 3. Reallocate the removed items to get a complete allocation

b

b

X1

X2

X1

X2



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:
▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

b

b

X1

X2

X1

X2



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:
▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

b

b

2

1 a

c

X1

X2

X1

X2

Step 1. We take the MNW allocation.



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:
▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3 en

vy
b

b

2

1 a

c

X1

X2

X1

X2

Step 2. The allocation is not 1
2 -EFX.



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:
▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

b

b

2

1 a

c

X1

X2

X1

X2

Step 2. Removing b from X1 gives a partial, 1
2 -EFX, 2

3 -MNW alloc.



Proof for additive valuations (α = 1/2)
Theorem: Every instance with additive valuations admits a complete
allocation that is 1

2 -EFX and 2
3 -MNW.

Proof. We analyze a three-stage algorithm:
▶ Step 1. Start with a MNW allocation
▶ Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

a b c

v1 6 + ε 3 1
v2 6 + ε 1 3

b

b2

1 a

c

X1

X2

X1

X2

Step 3. Adding b to X2 gives a complete, 1
2 -EFX, 2

3 -MNW alloc.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation

▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2

i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation

▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2

i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.

▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.

▶ Otherwise, pick j and g that maximize vi(Zj − g), and then
remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.

▶ Otherwise, pick j and g that maximize vi(Zj − g), and then
remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g

vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g

vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g

vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g

vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 2. Shrink some of the bundles to get a 1

2 -EFX allocation
▶ Pick an unmatched agent i.
▶ If vi(Zi) ≥ (1/2) · vi(Zj − g) for all j and g, then match i to Zi.
▶ Otherwise, pick j and g that maximize vi(Zj − g), and then

remove g from Zj and match i to Zj .

1

2i =

j =

...

n

Z1

Z2

Zn

g vj(X̂j) > (1/3) · vj(Xj)

vi(X̂i) > vi(Xi)

Note that vi(Zj) > 2 · vi(Zi)

...

vn(X̂n) > 3 · vn(Xn)

X̂j

X̂i

X̂n

Claim: After every operation, we have vj(Zj) ≥ (2/3) · vj(Xj).
Proof. Suppose the contrary holds. We construct an allocation X̂ for
which it holds that NW(X̂) > NW(X) which gives a contradiction.



Proof for additive valuations (α = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).

▶ If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle

▶ If there is an unenvied agent, give an unallocated item to her

Both operations preserve 2
3 -MNW.

Lemma: If we start step 3 with a α-EFX and γ-separated allocation,
then at the end we obtain a min(α, 1/(1 + γ))-EFX allocation.

An allocation is γ-separated for some γ ∈ [0, 1] if

vi(Xi) ≥ (1/γ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees α-separation.

Proof of Lemma. The first operation preserves 1
2 -EFX and 2

3 -MNW
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ≤ vj(Xj) + γ · vj(Xj) = (1 + γ) · vj(Xj).



Proof for additive valuations (α = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).
▶ If there is an envy cycle of agents where each agent prefers the

next agent’s bundle, then reallocate the bundles along the cycle

▶ If there is an unenvied agent, give an unallocated item to her

Both operations preserve 2
3 -MNW.

Lemma: If we start step 3 with a α-EFX and γ-separated allocation,
then at the end we obtain a min(α, 1/(1 + γ))-EFX allocation.

An allocation is γ-separated for some γ ∈ [0, 1] if

vi(Xi) ≥ (1/γ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees α-separation.

Proof of Lemma. The first operation preserves 1
2 -EFX and 2

3 -MNW
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ≤ vj(Xj) + γ · vj(Xj) = (1 + γ) · vj(Xj).



Proof for additive valuations (α = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).
▶ If there is an envy cycle of agents where each agent prefers the

next agent’s bundle, then reallocate the bundles along the cycle
▶ If there is an unenvied agent, give an unallocated item to her

Both operations preserve 2
3 -MNW.

Lemma: If we start step 3 with a α-EFX and γ-separated allocation,
then at the end we obtain a min(α, 1/(1 + γ))-EFX allocation.

An allocation is γ-separated for some γ ∈ [0, 1] if

vi(Xi) ≥ (1/γ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees α-separation.

Proof of Lemma. The first operation preserves 1
2 -EFX and 2

3 -MNW
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ≤ vj(Xj) + γ · vj(Xj) = (1 + γ) · vj(Xj).



Proof for additive valuations (α = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).
▶ If there is an envy cycle of agents where each agent prefers the

next agent’s bundle, then reallocate the bundles along the cycle
▶ If there is an unenvied agent, give an unallocated item to her

Both operations preserve 2
3 -MNW.

Lemma: If we start step 3 with a α-EFX and γ-separated allocation,
then at the end we obtain a min(α, 1/(1 + γ))-EFX allocation.

An allocation is γ-separated for some γ ∈ [0, 1] if

vi(Xi) ≥ (1/γ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees α-separation.

Proof of Lemma. The first operation preserves 1
2 -EFX and 2

3 -MNW
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ≤ vj(Xj) + γ · vj(Xj) = (1 + γ) · vj(Xj).



Proof for additive valuations (α = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).
▶ If there is an envy cycle of agents where each agent prefers the

next agent’s bundle, then reallocate the bundles along the cycle
▶ If there is an unenvied agent, give an unallocated item to her

Both operations preserve 2
3 -MNW.

Lemma: If we start step 3 with a α-EFX and γ-separated allocation,
then at the end we obtain a min(α, 1/(1 + γ))-EFX allocation.

An allocation is γ-separated for some γ ∈ [0, 1] if

vi(Xi) ≥ (1/γ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees α-separation.

Proof of Lemma. The first operation preserves 1
2 -EFX and 2

3 -MNW
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ≤ vj(Xj) + γ · vj(Xj) = (1 + γ) · vj(Xj).



Proof for additive valuations (α = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).
▶ If there is an envy cycle of agents where each agent prefers the

next agent’s bundle, then reallocate the bundles along the cycle
▶ If there is an unenvied agent, give an unallocated item to her

Both operations preserve 2
3 -MNW.

Lemma: If we start step 3 with a α-EFX and γ-separated allocation,
then at the end we obtain a min(α, 1/(1 + γ))-EFX allocation.

An allocation is γ-separated for some γ ∈ [0, 1] if

vi(Xi) ≥ (1/γ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees α-separation.

Proof of Lemma. The first operation preserves 1
2 -EFX and 2

3 -MNW
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ≤ vj(Xj) + γ · vj(Xj) = (1 + γ) · vj(Xj).



Proof for additive valuations (α = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).
▶ If there is an envy cycle of agents where each agent prefers the

next agent’s bundle, then reallocate the bundles along the cycle
▶ If there is an unenvied agent, give an unallocated item to her

Both operations preserve 2
3 -MNW.

Lemma: If we start step 3 with a α-EFX and γ-separated allocation,
then at the end we obtain a min(α, 1/(1 + γ))-EFX allocation.

An allocation is γ-separated for some γ ∈ [0, 1] if

vi(Xi) ≥ (1/γ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees α-separation.

Proof of Lemma. The first operation preserves 1
2 -EFX and 2

3 -MNW
because the set of allocated bundles remains the same and every
agent is weakly better off.

For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ≤ vj(Xj) + γ · vj(Xj) = (1 + γ) · vj(Xj).



Proof for additive valuations (α = 1/2)
Step 3. Reallocate the removed items to get a complete allocation

The envy graph contains an edge (i → j) if vi(Xj) > vi(Xi).
▶ If there is an envy cycle of agents where each agent prefers the

next agent’s bundle, then reallocate the bundles along the cycle
▶ If there is an unenvied agent, give an unallocated item to her

Both operations preserve 2
3 -MNW.

Lemma: If we start step 3 with a α-EFX and γ-separated allocation,
then at the end we obtain a min(α, 1/(1 + γ))-EFX allocation.

An allocation is γ-separated for some γ ∈ [0, 1] if

vi(Xi) ≥ (1/γ) · vi(g) for all unallocated g.

To use the lemma, we show that step 2 guarantees α-separation.

Proof of Lemma. The first operation preserves 1
2 -EFX and 2

3 -MNW
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vj(Xi + g) = vj(Xi) + vj(g) ≤ vj(Xj) + γ · vj(Xj) = (1 + γ) · vj(Xj).



Summary
Additive valuations

0 φ − 1 1
0

1/2

φ − 1

1

no partial allocation

β = 1
1+α

complete

allocations

partial

allocations

α-EFX

β
-M

N
W

Subadditive valuations

0 1/2 1
0

1/2

2/3

1

complete

allocations
?

no partial allocation

β = 1
1+α

α-EFX

β
-M

N
W

▶ Fill in the remaining gaps.
▶ What about tradeoffs between EF1 and Nash welfare?

For additive, EF1 and MNW is possible. [CKMPSW’16]
For subadditive, 1

4 -EF1 and MNW is possible. [WLG’21]
Is EF1 and β-MNW possible for subadditive?



Summary
Additive valuations

0 φ − 1 1
0

1/2

φ − 1

1

no partial allocation

β = 1
1+α

complete

allocations

partial

allocations

α-EFX

β
-M

N
W

Subadditive valuations

0 1/2 1
0

1/2

2/3

1

complete

allocations
?

no partial allocation

β = 1
1+α

α-EFX

β
-M

N
W

▶ Fill in the remaining gaps.

▶ What about tradeoffs between EF1 and Nash welfare?
For additive, EF1 and MNW is possible. [CKMPSW’16]
For subadditive, 1

4 -EF1 and MNW is possible. [WLG’21]
Is EF1 and β-MNW possible for subadditive?



Summary
Additive valuations

0 φ − 1 1
0

1/2

φ − 1

1

no partial allocation

β = 1
1+α

complete

allocations

partial

allocations

α-EFX

β
-M

N
W

Subadditive valuations

0 1/2 1
0

1/2

2/3

1

complete

allocations
?

no partial allocation

β = 1
1+α

α-EFX

β
-M

N
W

▶ Fill in the remaining gaps.
▶ What about tradeoffs between EF1 and Nash welfare?

For additive, EF1 and MNW is possible. [CKMPSW’16]
For subadditive, 1

4 -EF1 and MNW is possible. [WLG’21]
Is EF1 and β-MNW possible for subadditive?


