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Setting

A resource allocation problem consists of

> a set of agents [n] = {1,...,n}

> a set of indivisible goods M = {a,b,¢,...}
2M

» a valuation function v; : — R20 for every agent i

Standard assumptions:
» v, are normalized (v;(()) = 0)
» v; are monotone  (v;(A) < wv;(B) for A C B)

We study two classes of valuation functions:

> additive (0i(S) = D opegvi(®))
» subadditive (vi(AU B) < v;(A) +vi(B))

The goal is to return an allocation X = (X1,...,X,)
> X,...., X, € M are disjoint subsets of goods
» X might be complete (i.e., UiE[n] X; = M) or partial



Objective

Which of the following allocations should we choose?

L [ o b ]
V1 6+¢ 3 1
vy | 64+ 1 3

H \Ga i”




Objective

Which of the following allocations should we choose?

L [ o b ]
V1 6+¢ 3 1
vy | 64+ 1 3
» Efficient:

» Not fair:

v2(X1) =7+ ¢ and v2(X2) =3

2 strongly envies 1

L [« b ]
V1 6+¢ 3 1
vy | 64+ 1 3




Objective

Which of the following allocations should we choose?

L [ o b ] L [« b ]
V1 6+¢ 3 1 V1 6+¢ 3 1
vy | 64+ 1 3 vy | 64+ 1 3
» Efficient: » Less efficient:
ZUL(X-L) =12+¢ Z’UZ(Xz) =10+¢
» Not fair: » More fair:
v2(X1) =7+ ¢ and v2(X2) =3 v2(X1) =6+ ¢ and v2(X2) =4

2 strongly envies 1 The envy is smaller



Objective

Which of the following allocations should we choose?

L [ o b ] L [ & b ]
v | 64+ 3 1 v |64+ 3 1
vy | 64+ 1 3 vy | 64+ 1 3
» Efficient: » Less efficient:
Zvi(Xi)IIQ—‘rS Z’UZ(Xz) =10+¢
» Not fair: » More fair:
v2(X1) =7+ ¢ and v2(X2) =3 v2(X1) =6+ ¢ and v2(X2) =4
2 strongly envies 1 The envy is smaller

We are interested in the tradeoffs between efficiency (measured by
Nash welfare) and fairness (captured by EFX).
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Fairness

» An allocation is envy-free (EF) if v;(X;) > v;(X;) for all ¢ and j.
EF is impossible to satisfy in general.
> An allocation is envy-free up to any good (EFX) if
v;(X;) > v (X5 \ {g}) for any g € X;.

The existence of EFX is an open problem (no proof for additive
valuations, no counter-example for general monotone valuations!)

» An allocation is envy-free up to one good (EF1) if
v; (X)) > vi(X; \ {g}) for some g € Xj.
EF1 exists for general monotone valuations. [LMMS’04]
» An allocation is a-EFX for a € [0, 1] if
v (X;) > a - v (X; \ {g}) for any g € X;.
5-EFX exists for subadditive valuations. [PR'18]
(p — 1~ 0.618)-EFX exists for additive valuations. [AMN'20]
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Efficiency

Social welfare measures:
> Utilitarian welfare: UW(X) = Zlgign v;(X;)
> Nash welfare: NW(X) = [T, <, v:(Xi)'/"
Why focus on Nash welfare?

» A maximum Nash welfare (MNW) allocation is more balanced
relative to maximum utilitarian welfare allocations.

(%1 2 2 U1 2 2
vy |1 1 v | 1 1
Maximizes utilitarian welfare MNW allocation

» Nash welfare is scale-free.
» A MNW allocation is EF1. [CKMPSW'16]
» There is an instance where no EF1 allocation gets more than

O(1/+/n) fraction of maximum utilitarian welfare [BLMS'19]
(i.e., the price of fairness of EF1 is Q(y/n)).
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Nash welfare

Definition: NW(X) = H1§ign vy (X;)/m

We say that an allocation X is S-MNW for § € [0, 1] if
NW(X) > - maximum Nash welfare.

L [« b ] L [« b <]
v |64+ 3 1 vy |64+ 3 1
vy | 64+ 1 3 vy | 64+ 1 3
Nash welfare = \/(9+¢) -3 Nash welfare = /(6 +¢) - 4
This is a MNW allocation. This is a 0.94-MNW allocation.

What is known about Nash welfare:
» Finding a MNW allocation is NP-hard
> Poly-time (e!/¢ ~ 1.45)-approx. for additive valuations [BKV'18]
» Poly-time (4 + ¢)-approx. for submodular valuations [GHLVV'22]
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Proof. We analyze a three-stage algorithm:
» Step 1. Start with a MNW allocation
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> Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:
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Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete
allocation that is %—EFX and %—MNW.
Proof. We analyze a three-stage algorithm:

» Step 1. Start with a MNW allocation

» Step 2. Shrink some of the bundles to get a %—EFX allocation

» Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:
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Step 2. Removing b from X gives a partial, %-EFX7 %-MNVV' alloc.



Proof for additive valuations (o = 1/2)

Theorem: FEvery instance with additive valuations admits a complete

allocation that is %—EFX and %—MNW.

Proof. We analyze a three-stage algorithm:
» Step 1. Start with a MNW allocation
» Step 2. Shrink some of the bundles to get a %—EFX allocation

» Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:

v 6+¢ 3 1
vy |6+ 1 3
2 O X2

Step 3. Adding b to X5 gives a complete, %-EFX, %—MNVV alloc.
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Step 2. Shrink some of the bundles to get a %—EFX allocation

» Pick an unmatched agent i.

> If v;(Z;) > (1/2) - v;(Z; — g) for all j and g, then match ¢ to Z;.

» Otherwise, pick j and ¢ that maximize v;(Z; — g), and then
remove g from Z; and match i to Z;.

v (X5) > (1/3) - v;(X;)

o SEEDA

Claim: After every operation, we have v;(Z;) > (2/3) - v;(Xj).
Proof. Suppose the contrary holds. We construct an allocation X for
which it holds that NW(X) > NW(X) which gives a contradiction.
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v;(X;) > (1/7) - vi(g) for all unallocated g.
To use the lemma, we show that step 2 guarantees a-separation.

Proof of Lemma. The first operation preserves %—EF‘ X and %-MNVV
because the set of allocated bundles remains the same and every
agent is weakly better off.
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The envy graph contains an edge (i — j) if v;(X;) > v;(X;).

» If there is an envy cycle of agents where each agent prefers the
next agent’s bundle, then reallocate the bundles along the cycle
> If there is an unenvied agent, give an unallocated item to her

. 2 2\
Both operations preserve -MNW.

Lemma: If we start step 3 with a a-EFX and ~-separated allocation,
then at the end we obtain a min(«, 1/(1 + ~))-EFX allocation.

An allocation is v-separated for some v € [0, 1] if
v;(X;) > (1/7) - vi(g) for all unallocated g.
To use the lemma, we show that step 2 guarantees a-separation.

Proof of Lemma. The first operation preserves %—EF‘ X and %-MNVV
because the set of allocated bundles remains the same and every
agent is weakly better off. For the second operation, observe that

vi(Xi +9) = v;(Xe) +05(9) <v;(X5) +7-0;(X;) = (L +7) - v;(X;).
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» Fill in the remaining gaps.
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» Fill in the remaining gaps.

» What about tradeoffs between EF1 and Nash welfare?
For additive, EF1 and MNW is possible. [CKMPSW'16]

For subadditive,
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Subadditive valuations
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Is EF1 and S-MNW possible for subadditive?

1/2

1-EF1 and MNW is possible. [WLG'21]



