On Optimal Tradeoffs between EFX and Nash Welfare

Tomasz Ponitka with Michal Feldman and Simon Mauras

Tel Aviv University

May 11, 2023

A resource allocation problem consists of

- ▶ a set of agents $[n] = \{1, ..., n\}$
- ▶ a set of indivisible goods $M = \{a, b, c, ...\}$
- \blacktriangleright a valuation function $v_i: 2^M \rightarrow \mathbb{R}^{\geq 0}$ for every agent i

A resource allocation problem consists of

- ▶ a set of agents $[n] = \{1, ..., n\}$
- ▶ a set of indivisible goods $M = \{a, b, c, ...\}$
- \blacktriangleright a valuation function $v_i: 2^M \rightarrow \mathbb{R}^{\geq 0}$ for every agent i

Standard assumptions:

- v_i are normalized $(v_i(\emptyset) = 0)$
- ▶ v_i are monotone $(v_i(A) \le v_i(B) \text{ for } A \subseteq B)$

A resource allocation problem consists of

- ▶ a set of agents $[n] = \{1, ..., n\}$
- ▶ a set of indivisible goods $M = \{a, b, c, ...\}$
- \blacktriangleright a valuation function $v_i: 2^M \rightarrow \mathbb{R}^{\geq 0}$ for every agent i

Standard assumptions:

- v_i are normalized $(v_i(\emptyset) = 0)$
- ▶ v_i are monotone $(v_i(A) \le v_i(B) \text{ for } A \subseteq B)$

We study two classes of valuation functions:

▶ additive (v_i(S) = ∑_{x∈S} v_i(x))
 ▶ subadditive (v_i(A ∪ B) ≤ v_i(A) + v_i(B))

A resource allocation problem consists of

- ▶ a set of agents $[n] = \{1, ..., n\}$
- ▶ a set of indivisible goods $M = \{a, b, c, ...\}$
- ▶ a valuation function $v_i: 2^M \to \mathbb{R}^{\geq 0}$ for every agent *i*

Standard assumptions:

- v_i are normalized $(v_i(\emptyset) = 0)$
- ▶ v_i are monotone $(v_i(A) \le v_i(B) \text{ for } A \subseteq B)$

We study two classes of valuation functions:

▶ additive $(v_i(S) = \sum_{x \in S} v_i(x))$ ▶ subadditive $(v_i(A \cup B) \le v_i(A) + v_i(B))$

The goal is to return an allocation $X = (X_1, \ldots, X_n)$

- $X_1, \ldots, X_n \subseteq M$ are disjoint subsets of goods
- ► X might be complete (i.e., $\bigcup_{i \in [n]} X_i = M$) or partial

Which of the following allocations should we choose?

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

Which of the following allocations should we choose?

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6+\varepsilon$	1	3

► Efficient:

$$\sum v_i(X_i) = 12 + \varepsilon$$

▶ Not fair:

$$v_2(X_1) = 7 + \varepsilon$$
 and $v_2(X_2) = 3$
2 strongly envies 1

Which of the following allocations should we choose?

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

► Efficient:

$$\sum v_i(X_i) = 12 + \varepsilon$$

- ► Not fair:
 - $v_2(X_1) = 7 + \varepsilon$ and $v_2(X_2) = 3$ 2 strongly envies 1

	a	b	с
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

- Less efficient: $\sum v_i(X_i) = 10 + \varepsilon$
- ► More fair:
 - $v_2(X_1) = 6 + \varepsilon$ and $v_2(X_2) = 4$ The envy is smaller

Which of the following allocations should we choose?

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

► Efficient:

$$\sum v_i(X_i) = 12 + \varepsilon$$

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

- Less efficient: $\sum v_i(X_i) = 10 + \varepsilon$
- Not fair:
 v₂(X₁) = 7 + ε and v₂(X₂) = 3
 2 strongly envies 1
- ► More fair:
 - $v_2(X_1) = 6 + \varepsilon$ and $v_2(X_2) = 4$ The envy is smaller

We are interested in the tradeoffs between efficiency (measured by Nash welfare) and fairness (captured by EFX).

An allocation is envy-free (EF) if $v_i(X_i) \ge v_i(X_j)$ for all i and j. EF is impossible to satisfy in general.

- An allocation is envy-free (EF) if $v_i(X_i) \ge v_i(X_j)$ for all i and j. EF is impossible to satisfy in general.
- An allocation is envy-free up to any good (EFX) if

 $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for any $g \in X_j$.

The existence of EFX is an open problem (no proof for additive valuations, no counter-example for general monotone valuations!)

- An allocation is envy-free (EF) if $v_i(X_i) \ge v_i(X_j)$ for all i and j. EF is impossible to satisfy in general.
- An allocation is envy-free up to $any \mod (EFX)$ if

 $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for any $g \in X_j$.

The existence of EFX is an open problem (no proof for additive valuations, no counter-example for general monotone valuations!)

▶ An allocation is envy-free up to *one* good (EF1) if

 $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for some $g \in X_j$.

EF1 exists for general monotone valuations. [LMMS'04]

- An allocation is envy-free (EF) if $v_i(X_i) \ge v_i(X_j)$ for all i and j. EF is impossible to satisfy in general.
- ▶ An allocation is envy-free up to *any* good (EFX) if

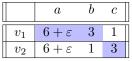
 $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for any $g \in X_j$.

The existence of EFX is an open problem (no proof for additive valuations, no counter-example for general monotone valuations!)

▶ An allocation is envy-free up to *one* good (EF1) if

 $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for some $g \in X_j$.

EF1 exists for general monotone valuations. [LMMS'04]



EF1 but not EFX



EFX but not EF

- An allocation is envy-free (EF) if $v_i(X_i) \ge v_i(X_j)$ for all i and j. EF is impossible to satisfy in general.
- ▶ An allocation is envy-free up to any good (EFX) if

 $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for any $g \in X_j$.

The existence of EFX is an open problem (no proof for additive valuations, no counter-example for general monotone valuations!)

▶ An allocation is envy-free up to *one* good (EF1) if

 $v_i(X_i) \ge v_i(X_j \setminus \{g\})$ for some $g \in X_j$.

EF1 exists for general monotone valuations. [LMMS'04] An allocation is α -EFX for $\alpha \in [0, 1]$ if

 $v_i(X_i) \ge \alpha \cdot v_i(X_j \setminus \{g\})$ for any $g \in X_j$.

 $\frac{1}{2}\text{-}\mathrm{EFX}$ exists for subadditive valuations. [PR'18] ($\varphi-1\approx0.618)\text{-}\mathrm{EFX}$ exists for additive valuations. [AMN'20]

Social welfare measures:

- ▶ Utilitarian welfare: $UW(X) = \sum_{1 \le i \le n} v_i(X_i)$
- ▶ Nash welfare: NW(X) = $\prod_{1 \le i \le n} v_i(X_i)^{1/n}$

Social welfare measures:

- ▶ Utilitarian welfare: $UW(X) = \sum_{1 \le i \le n} v_i(X_i)$
- ▶ Nash welfare: NW(X) = $\prod_{1 \le i \le n} v_i(X_i)^{1/n}$

Why focus on Nash welfare?

Social welfare measures:

- ▶ Utilitarian welfare: $UW(X) = \sum_{1 \le i \le n} v_i(X_i)$
- ▶ Nash welfare: NW(X) = $\prod_{1 \le i \le n} v_i(X_i)^{1/n}$

Why focus on Nash welfare?

► A maximum Nash welfare (MNW) allocation is more balanced relative to maximum utilitarian welfare allocations.

Maximizes utilitarian welfare

MNW allocation

Social welfare measures:

- ▶ Utilitarian welfare: $UW(X) = \sum_{1 \le i \le n} v_i(X_i)$
- ▶ Nash welfare: NW(X) = $\prod_{1 \le i \le n} v_i(X_i)^{1/n}$

Why focus on Nash welfare?

► A maximum Nash welfare (MNW) allocation is more balanced relative to maximum utilitarian welfare allocations.

Maximizes utilitarian welfare

Nash welfare is *scale-free*.

MNW allocation

Social welfare measures:

- ▶ Utilitarian welfare: $UW(X) = \sum_{1 \le i \le n} v_i(X_i)$
- ▶ Nash welfare: NW(X) = $\prod_{1 \le i \le n} v_i(X_i)^{1/n}$

Why focus on Nash welfare?

► A maximum Nash welfare (MNW) allocation is more balanced relative to maximum utilitarian welfare allocations.

Maximizes utilitarian welfare

- ▶ Nash welfare is *scale-free*.
- ► A MNW allocation is EF1. [CKMPSW'16]

MNW allocation

Social welfare measures:

- ▶ Utilitarian welfare: $UW(X) = \sum_{1 \le i \le n} v_i(X_i)$
- ▶ Nash welfare: NW(X) = $\prod_{1 \le i \le n} v_i(X_i)^{1/n}$

Why focus on Nash welfare?

► A maximum Nash welfare (MNW) allocation is more balanced relative to maximum utilitarian welfare allocations.

Maximizes utilitarian welfare

- ▶ Nash welfare is *scale-free*.
- ► A MNW allocation is EF1. [CKMPSW'16]
- There is an instance where no EF1 allocation gets more than O(1/√n) fraction of maximum utilitarian welfare [BLMS'19] (i.e., the price of fairness of EF1 is Ω(√n)).

MNW allocation

Definition: NW(X) = $\prod_{1 \leq i \leq n} v_i(X_i)^{1/n}$

Definition: $NW(X) = \prod_{1 \le i \le n} v_i(X_i)^{1/n}$

We say that an allocation X is β -MNW for $\beta \in [0, 1]$ if NW(X) $\geq \beta \cdot$ maximum Nash welfare.

Definition: $NW(X) = \prod_{1 \le i \le n} v_i(X_i)^{1/n}$

We say that an allocation X is β -MNW for $\beta \in [0, 1]$ if

 $NW(X) \ge \beta \cdot maximum$ Nash welfare.

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

Nash welfare = $\sqrt{(9 + \varepsilon) \cdot 3}$ This is a MNW allocation.

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

Nash welfare = $\sqrt{(6 + \varepsilon) \cdot 4}$ This is a 0.94-MNW allocation.

Definition: $NW(X) = \prod_{1 \le i \le n} v_i(X_i)^{1/n}$

We say that an allocation X is β -MNW for $\beta \in [0, 1]$ if

 $NW(X) \ge \beta \cdot maximum$ Nash welfare.

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

Nash welfare = $\sqrt{(9 + \varepsilon) \cdot 3}$ This is a MNW allocation.

	a	b	c
v_1	$6 + \varepsilon$	3	1
v_2	$6 + \varepsilon$	1	3

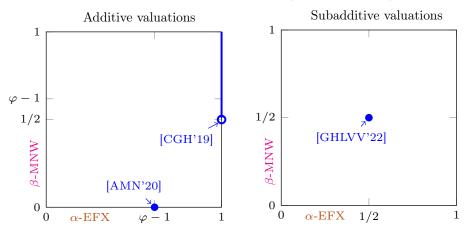
Nash welfare = $\sqrt{(6 + \varepsilon) \cdot 4}$ This is a 0.94-MNW allocation.

What is known about Nash welfare:

- ▶ Finding a MNW allocation is NP-hard
- ▶ Poly-time ($e^{1/e} \approx 1.45$)-approx. for additive valuations [BKV'18]
- ▶ Poly-time $(4 + \varepsilon)$ -approx. for submodular valuations [GHLVV'22]

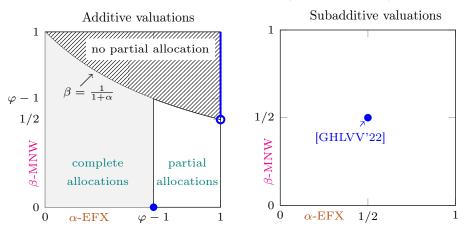
Is there an α -EFX and β -MNW allocation (partial/complete)?

Is there an α -EFX and β -MNW allocation (partial/complete)?



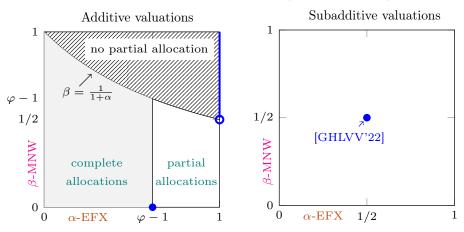
Note that $\varphi - 1 \approx 0.618$.

Is there an α -EFX and β -MNW allocation (partial/complete)?



Note that $\varphi - 1 \approx 0.618$.

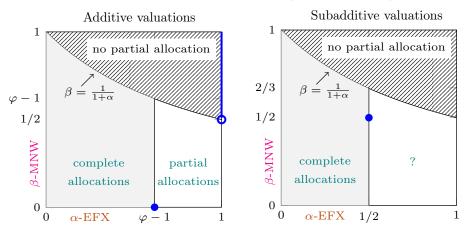
Is there an α -EFX and β -MNW allocation (partial/complete)?



Note that $\varphi - 1 \approx 0.618$.

• We provide a new way to construct $(\varphi - 1)$ -EFX for additive.

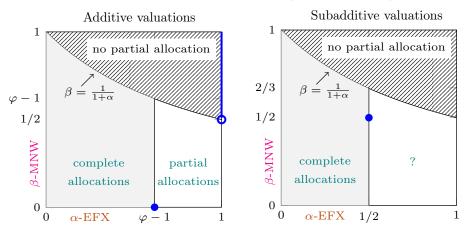
Is there an α -EFX and β -MNW allocation (partial/complete)?



Note that $\varphi - 1 \approx 0.618$.

• We provide a new way to construct $(\varphi - 1)$ -EFX for additive.

Is there an α -EFX and β -MNW allocation (partial/complete)?



Note that $\varphi - 1 \approx 0.618$.

• We provide a new way to construct $(\varphi - 1)$ -EFX for additive.

▶ We improve $\frac{1}{2}$ -EFX, $\frac{1}{2}$ -MNW to $\frac{1}{2}$ -EFX, $\frac{2}{3}$ -MNW for subadditive.

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

▶ Step 1. Start with a MNW allocation

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a MNW allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a MNW allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation
- ▶ Step 3. Reallocate the removed items to get a complete allocation

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a MNW allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation
- ▶ Step 3. Reallocate the removed items to get a complete allocation

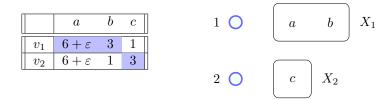
Consider the running example:

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a MNW allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation
- ▶ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:



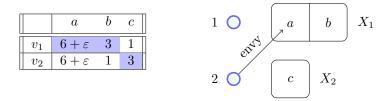
Step 1. We take the MNW allocation.

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a MNW allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation
- ▶ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:



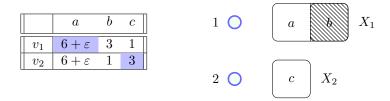
Step 2. The allocation is not $\frac{1}{2}$ -EFX.

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

- ▶ Step 1. Start with a MNW allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation
- ▶ Step 3. Reallocate the removed items to get a complete allocation

Consider the running example:



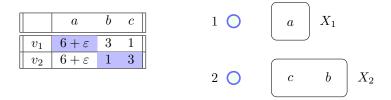
Step 2. Removing *b* from X_1 gives a partial, $\frac{1}{2}$ -EFX, $\frac{2}{3}$ -MNW alloc.

Theorem: Every instance with additive valuations admits a complete allocation that is $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW.

Proof. We analyze a three-stage algorithm:

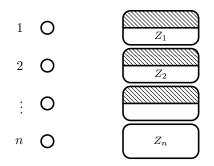
- ▶ Step 1. Start with a MNW allocation
- ▶ Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation
- ▶ Step 3. Reallocate the removed items to get a complete allocation

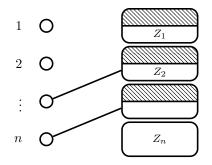
Consider the running example:



Step 3. Adding b to X_2 gives a complete, $\frac{1}{2}$ -EFX, $\frac{2}{3}$ -MNW alloc.

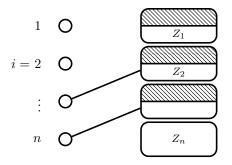
Proof for additive valuations $(\alpha = 1/2)$



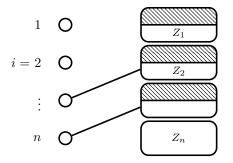


Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation

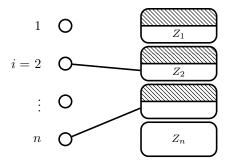
 \blacktriangleright Pick an unmatched agent *i*.



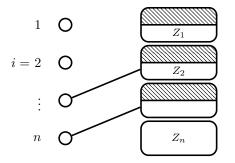
- \blacktriangleright Pick an unmatched agent *i*.
- ▶ If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .



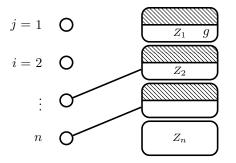
- \blacktriangleright Pick an unmatched agent *i*.
- ▶ If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .



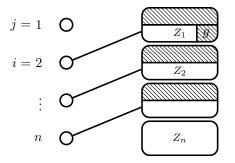
- \blacktriangleright Pick an unmatched agent *i*.
- ▶ If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .



- \blacktriangleright Pick an unmatched agent *i*.
- ▶ If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .

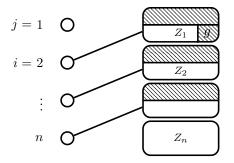


- \blacktriangleright Pick an unmatched agent *i*.
- ▶ If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .



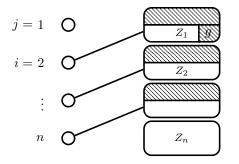
Step 2. Shrink some of the bundles to get a $\frac{1}{2}$ -EFX allocation

- \blacktriangleright Pick an unmatched agent *i*.
- ▶ If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .



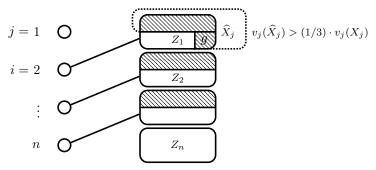
Note that $v_i(Z_j) > 2 \cdot v_i(Z_i)$

- \blacktriangleright Pick an unmatched agent *i*.
- If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .



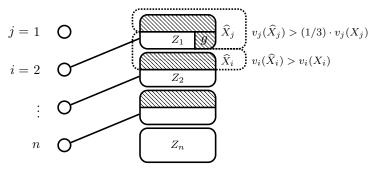
Claim: After every operation, we have $v_j(Z_j) \ge (2/3) \cdot v_j(X_j)$. *Proof.* Suppose the contrary holds. We construct an allocation \widehat{X} for which it holds that $NW(\widehat{X}) > NW(X)$ which gives a contradiction.

- \blacktriangleright Pick an unmatched agent *i*.
- If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .



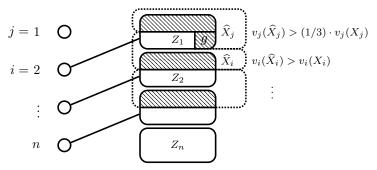
Claim: After every operation, we have $v_j(Z_j) \ge (2/3) \cdot v_j(X_j)$. *Proof.* Suppose the contrary holds. We construct an allocation \widehat{X} for which it holds that $NW(\widehat{X}) > NW(X)$ which gives a contradiction.

- \blacktriangleright Pick an unmatched agent *i*.
- If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .



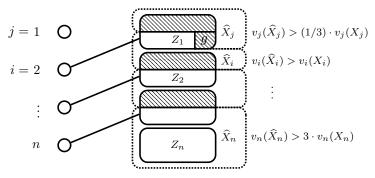
Claim: After every operation, we have $v_j(Z_j) \ge (2/3) \cdot v_j(X_j)$. *Proof.* Suppose the contrary holds. We construct an allocation \widehat{X} for which it holds that $NW(\widehat{X}) > NW(X)$ which gives a contradiction.

- \blacktriangleright Pick an unmatched agent *i*.
- If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .



Claim: After every operation, we have $v_j(Z_j) \ge (2/3) \cdot v_j(X_j)$. *Proof.* Suppose the contrary holds. We construct an allocation \widehat{X} for which it holds that $NW(\widehat{X}) > NW(X)$ which gives a contradiction.

- \blacktriangleright Pick an unmatched agent *i*.
- If $v_i(Z_i) \ge (1/2) \cdot v_i(Z_j g)$ for all j and g, then match i to Z_i .
- Otherwise, pick j and g that maximize $v_i(Z_j g)$, and then remove g from Z_j and match i to Z_j .



Claim: After every operation, we have $v_j(Z_j) \ge (2/3) \cdot v_j(X_j)$. *Proof.* Suppose the contrary holds. We construct an allocation \widehat{X} for which it holds that $NW(\widehat{X}) > NW(X)$ which gives a contradiction.

Step 3. Reallocate the removed items to get a complete allocation The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

Step 3. Reallocate the removed items to get a complete allocation The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

▶ If there is an *envy cycle* of agents where each agent prefers the next agent's bundle, then reallocate the bundles along the cycle

Step 3. Reallocate the removed items to get a complete allocation The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

- If there is an *envy cycle* of agents where each agent prefers the next agent's bundle, then reallocate the bundles along the cycle
- ▶ If there is an *unenvied* agent, give an unallocated item to her

Step 3. Reallocate the removed items to get a complete allocation The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

- If there is an *envy cycle* of agents where each agent prefers the next agent's bundle, then reallocate the bundles along the cycle
- ▶ If there is an *unenvied* agent, give an unallocated item to her

Both operations preserve $\frac{2}{3}$ -MNW.

Step 3. Reallocate the removed items to get a complete allocation The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

- If there is an *envy cycle* of agents where each agent prefers the next agent's bundle, then reallocate the bundles along the cycle
- ▶ If there is an *unenvied* agent, give an unallocated item to her

Both operations preserve $\frac{2}{3}$ -MNW.

Lemma: If we start step 3 with a α -EFX and γ -separated allocation, then at the end we obtain a $\min(\alpha, 1/(1 + \gamma))$ -EFX allocation.

An allocation is γ -separated for some $\gamma \in [0, 1]$ if

 $v_i(X_i) \ge (1/\gamma) \cdot v_i(g)$ for all unallocated g.

Step 3. Reallocate the removed items to get a complete allocation The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

- If there is an *envy cycle* of agents where each agent prefers the next agent's bundle, then reallocate the bundles along the cycle
- ▶ If there is an *unenvied* agent, give an unallocated item to her

Both operations preserve $\frac{2}{3}$ -MNW.

Lemma: If we start step 3 with a α -EFX and γ -separated allocation, then at the end we obtain a $\min(\alpha, 1/(1 + \gamma))$ -EFX allocation.

An allocation is γ -separated for some $\gamma \in [0, 1]$ if

 $v_i(X_i) \ge (1/\gamma) \cdot v_i(g)$ for all unallocated g.

To use the lemma, we show that step 2 guarantees α -separation.

Step 3. Reallocate the removed items to get a complete allocation The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

- If there is an *envy cycle* of agents where each agent prefers the next agent's bundle, then reallocate the bundles along the cycle
- ▶ If there is an *unenvied* agent, give an unallocated item to her

Both operations preserve $\frac{2}{3}$ -MNW.

Lemma: If we start step 3 with a α -EFX and γ -separated allocation, then at the end we obtain a $\min(\alpha, 1/(1 + \gamma))$ -EFX allocation.

An allocation is γ -separated for some $\gamma \in [0, 1]$ if

 $v_i(X_i) \ge (1/\gamma) \cdot v_i(g)$ for all unallocated g.

To use the lemma, we show that step 2 guarantees α -separation.

Proof of Lemma. The first operation preserves $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW because the set of allocated bundles remains the same and every agent is weakly better off.

Step 3. Reallocate the removed items to get a complete allocation The *envy graph* contains an edge $(i \rightarrow j)$ if $v_i(X_j) > v_i(X_i)$.

- If there is an *envy cycle* of agents where each agent prefers the next agent's bundle, then reallocate the bundles along the cycle
- ▶ If there is an *unenvied* agent, give an unallocated item to her

Both operations preserve $\frac{2}{3}$ -MNW.

Lemma: If we start step 3 with a α -EFX and γ -separated allocation, then at the end we obtain a $\min(\alpha, 1/(1 + \gamma))$ -EFX allocation.

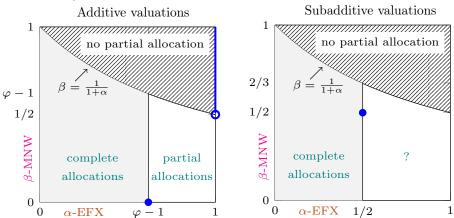
An allocation is γ -separated for some $\gamma \in [0, 1]$ if

 $v_i(X_i) \ge (1/\gamma) \cdot v_i(g)$ for all unallocated g.

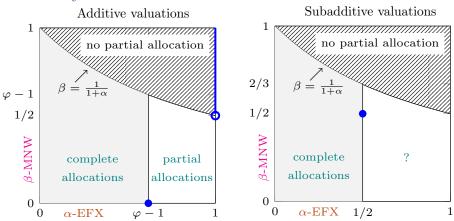
To use the lemma, we show that step 2 guarantees α -separation.

Proof of Lemma. The first operation preserves $\frac{1}{2}$ -EFX and $\frac{2}{3}$ -MNW because the set of allocated bundles remains the same and every agent is weakly better off. For the second operation, observe that $v_j(X_i + g) = v_j(X_i) + v_j(g) \leq v_j(X_j) + \gamma \cdot v_j(X_j) = (1 + \gamma) \cdot v_j(X_j).$

Summary

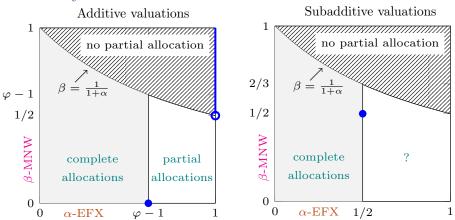


Summary



▶ Fill in the remaining gaps.

Summary



- ▶ Fill in the remaining gaps.
- ▶ What about tradeoffs between EF1 and Nash welfare? For additive, EF1 and MNW is possible. [CKMPSW'16] For subadditive, $\frac{1}{4}$ -EF1 and MNW is possible. [WLG'21] Is EF1 and β -MNW possible for subadditive?