Breaking the Envy Cycle: Best-of-Both-Worlds Guarantees for Subadditive Valuations

Tomek Ponitka

Tel Aviv University

Joint work with

Michal Feldman Tel Aviv University Simon Mauras

Vishnu V. Narayan Tel Aviv University

Problem

Allocating limited resources via fair randomized lotteries

Affordable Housing

School Admissions

Residence Permits

Problem

Allocating limited resources via fair randomized lotteries

Our model: agents with equal entitlement and diverse preferences over resources

Simple Model: Unit-Demand

Agents have unit-demand valuations:

 $\boldsymbol{\nu}_i(X_i) = \max_{j \in X_i} \boldsymbol{\nu}_{i,j}$

 X_i is agent *i*'s allocation

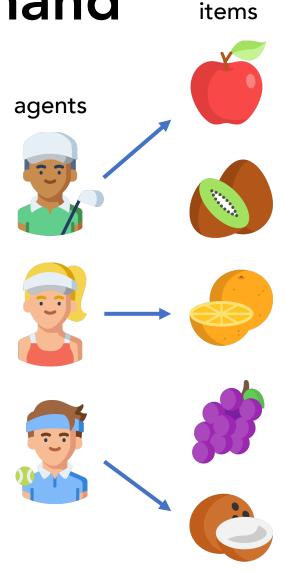
A randomized lottery X is a probability distribution over integral allocations.

X is ex-ante envy-free (EF) if: $\mathbb{E}[v_i(X_i)] \ge \mathbb{E}[v_i(X_j)]$

ex ante = before randomization

Ex-ante EF exists via simultaneous eating.

[Bogomolnaia, Moulin, 2001]



Intermediate Model: Additive

Agents have additive valuations:

$$v_i(X_i) = \sum_{j \in X_i} v_{i,j}$$

 X_i is agent *i*'s allocation

X is ex-ante envy-free (EF) if $\mathbb{E}[v_i(X_i)] \ge \mathbb{E}[v_i(X_j)]$.

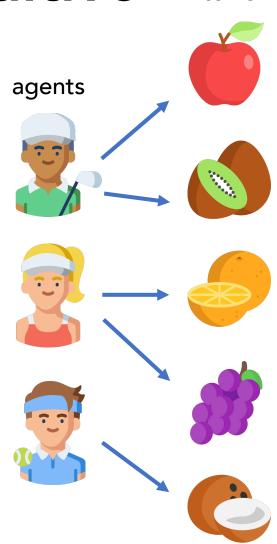
ex-ante = before randomization

X is ex-post EF1 if every realization satisfies: $v_i(X_i) \ge v_i(X_j - g)$ for some $g \in X_i$

ex-post = after randomization

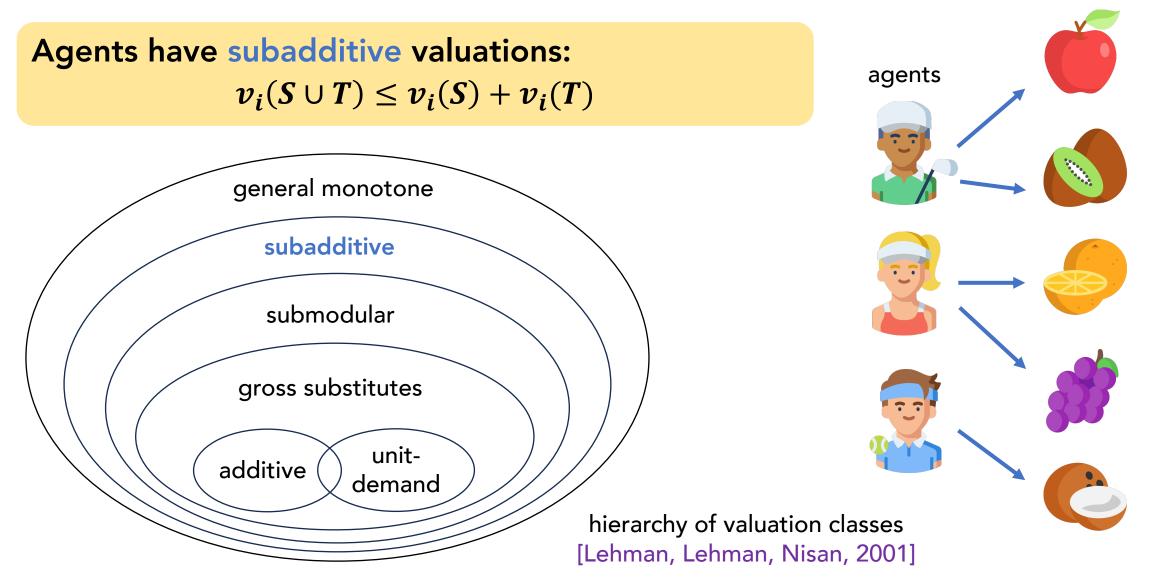
Best-of-both-worlds guarantee: Ex-ante EF and ex-post EF1 exists for additive vals.

[Freeman, Shah, Vaish, 2020] and [Aziz, 2020]



items

Combinatorial Model: Subadditive



Starting point: [Freeman, Shah, Vaish, 2020] and [Aziz, 2020] Ex-ante EF and ex-post EF1 exists for additive vals.

 $\left(\mathbb{E}[v_i(X_i)] \ge \mathbb{E}[v_i(X_j)] \right) \quad \left(v_i(X_i) \ge v_i(X_j - g) \text{ for some } g \in X_i \right) \quad \left(v_i(X_i) = \sum_{X_i} v_{i,j} \right)$

Starting point: [Freeman, Shah, Vaish, 2020] and [Aziz, 2020] Ex-ante EF and ex-post EF1 exists for additive vals.

 $\left(\mathbb{E}[v_i(X_i)] \ge \mathbb{E}[v_i(X_j)] \right) \quad \left(v_i(X_i) \ge v_i(X_j - g) \text{ for some } g \in X_i \right) \quad \left(v_i(X_i) = \sum_{X_i} v_{i,j} \right)$

Q1: Can we get subadditive vals?

 $(v_i(S \cup T) \le v_i(S) + v_i(T))$

Starting point: [Freeman, Shah, Vaish, 2020] and [Aziz, 2020] Ex-ante EF and ex-post EF1 exists for additive vals.

 $\left(\mathbb{E}[\boldsymbol{v}_i(X_i)] \ge \mathbb{E}[\boldsymbol{v}_i(X_j)] \right) \quad \left(\boldsymbol{v}_i(X_i) \ge \boldsymbol{v}_i(X_j - \boldsymbol{g}) \text{ for some } \boldsymbol{g} \in X_i \right) \quad \left(\boldsymbol{v}_i(X_i) = \sum_{X_i} \boldsymbol{v}_{i,j} \right)$

Q1: Can we get subadditive vals?

 $\left(\boldsymbol{v}_i(\boldsymbol{S}\cup\boldsymbol{T})\leq\boldsymbol{v}_i(\boldsymbol{S})+\boldsymbol{v}_i(\boldsymbol{T})\right)$

Q2: Can we get ex-post EFX?

 $(v_i(X_i) \ge v_i(X_j - g) \text{ for all } g \in X_i)$

Starting point: [Freeman, Shah, Vaish, 2020] and [Aziz, 2020] Ex-ante EF and ex-post EF1 exists for additive vals.

 $\left(\mathbb{E}[\boldsymbol{v}_i(X_i)] \ge \mathbb{E}[\boldsymbol{v}_i(X_j)] \right) \quad \left(\boldsymbol{v}_i(X_i) \ge \boldsymbol{v}_i(X_j - \boldsymbol{g}) \text{ for some } \boldsymbol{g} \in X_i \right) \quad \left(\boldsymbol{v}_i(X_i) = \sum_{X_i} \boldsymbol{v}_{i,j} \right)$

Q1: Can we get subadditive vals?

 $\left(v_i(S \cup T) \le v_i(S) + v_i(T)\right)$

Q2: Can we get ex-post EFX?

$$(v_i(X_i) \geq v_i(X_j - g) \text{ for all } g \in X_i)$$

Theorem (impossibility result): Ex-ante EF and ex-post EFX does not exist for subadditive vals.

Main Result

Theorem:

Ex-ante $\frac{1}{2}$ -**EF** and **ex-post** $\frac{1}{2}$ -**EFX** + **EF1** exists for subadditive vals.

 $\left(\mathbb{E}[\nu_i(X_i)] \ge 1/2 \cdot \mathbb{E}[\nu_i(X_j)]\right) \quad \left(\nu_i(X_i) \ge 1/2 \cdot \nu_i(X_j - g) \text{ for all } g \in X_i\right) \quad \left(\nu_i(S \cup T) \le \nu_i(S) + \nu_i(T)\right)$

Main Result

Theorem:

Ex-ante $\frac{1}{2}$ -**EF** and **ex-post** $\frac{1}{2}$ -**EFX** + **EF1** exists for subadditive vals.

 $\left(\mathbb{E}[v_i(X_i)] \ge 1/2 \cdot \mathbb{E}[v_i(X_j)]\right) \quad \left(v_i(X_i) \ge 1/2 \cdot v_i(X_j - g) \text{ for all } g \in X_i\right) \quad \left(v_i(S \cup T) \le v_i(S) + v_i(T)\right)$

Starting point: [Freeman, Shah, Vaish, 2020] and [Aziz, 2020] Ex-ante EF and ex-post EF1 exists for additive vals.

 $\left(\mathbb{E}[v_i(X_i)] \ge \mathbb{E}[v_i(X_j)]\right) \quad \left(v_i(X_i) \ge v_i(X_j - g) \text{ for some } g \in X_i\right) \quad \left(v_i(X_i) = \sum_{X_i} v_{i,j}\right)$

- More general setting.
- Stronger ex-post guarantee.
- Weaker ex-ante guarantee.

Main Result

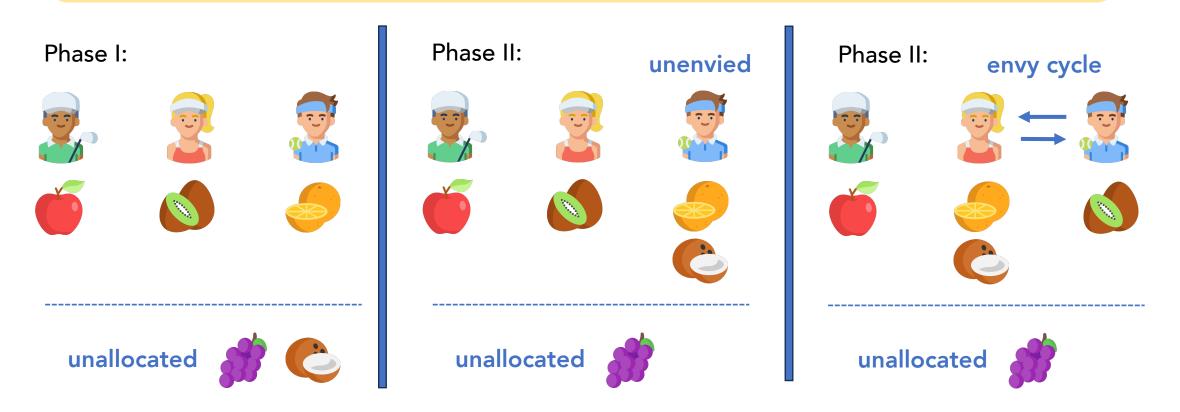
Theorem:

Ex-ante $\frac{1}{2}$ -**EF** and **ex-post** $\frac{1}{2}$ -**EFX** + **EF1** exists for subadditive vals.

 $\left(\mathbb{E}[v_i(X_i)] \ge 1/2 \cdot \mathbb{E}[v_i(X_j)]\right) \quad \left(v_i(X_i) \ge 1/2 \cdot v_i(X_j - g) \text{ for all } g \in X_i\right) \quad \left(v_i(S \cup T) \le v_i(S) + v_i(T)\right)$

- Removing both approximation factors (1/2 and 1/2) is impossible.
- Going beyond subadditive to general monotone is impossible.
- The first best-of-both-worlds guarantee for subadditive valuations.
- ¹/₂-EFX is the best known approximation of EFX for subadditive.
- Proof via a careful randomization of the Envy Cycles procedure.

Phase I: Allocate one item per agent. ^[Lipton, Markakis, Mossel, Saberi, 2004] Phase II: In each iteration, give unallocated item to unenvied agent. If all agents are envied, exchange bundles along envy cycle.



Phase I: Allocate one item per agent. ^[Lipton, Markakis, Mossel, Saberi, 2004] Phase II: In each iteration, give unallocated item to unenvied agent. If all agents are envied, exchange bundles along envy cycle.

[Lipton, Markakis, Mossel, Saberi, 2004] and [Plaut, Roughgarden, 2020]

For subadditive vals, under mild assumptions for Phase I, the outcome of Envy Cycles always satisfies ex-post EF1 and ½-EFX.

 $(v_i(X_i) \ge v_i(X_j - g) \text{ for some } g \in X_i) (v_i(X_i) \ge 1/2 \cdot v_i(X_j - g) \text{ for all } g \in X_i)$

The main difficulty is to guarantee ex-ante ¹/₂-EF.

 $\left(\mathbb{E}[v_i(X_i)] \geq 1/2 \cdot \mathbb{E}[v_i(X_j)]\right)$

Phase I: Allocate one item per agent. ^[Lipton, Markakis, Mossel, Saberi, 2004] Phase II: In each iteration, give unallocated item to unenvied agent. If all agents are envied, exchange bundles along envy cycle.

Guarantee ex-ante ¹/₂-EF by randomizing the choice of:

- 1. one item per agent
- 2. unallocated item
- 3. unenvied agent
- 4. envy cycle

 Phase I: Allocate one item per agent. ^[Lipton, Markakis, Mossel, Saberi, 2004]
Phase II: In each iteration, give unallocated item to unenvied agent. If all agents are envied, exchange bundles along envy cycle.

Guarantee ex-ante ¹/₂-EF by randomizing the choice of:

1. one item per agent - simultaneous eating and Birkhoff rounding

(see paper for details)

2. unallocated item

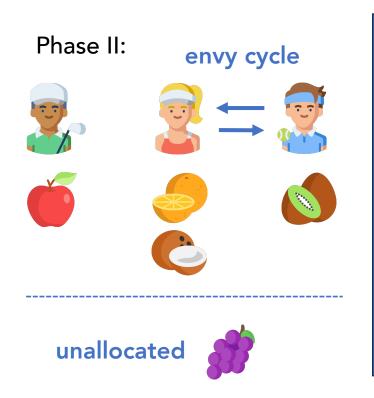
3. unenvied agent

4. envy cycle

arbitrary choices

---- crucial part

 Phase I: Allocate one item per agent. ^[Lipton, Markakis, Mossel, Saberi, 2004]
Phase II: In each iteration, give unallocated item to unenvied agent. If all agents are envied, exchange bundles along envy cycle.



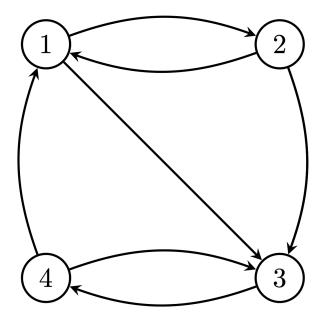
Which envy cycle to choose?

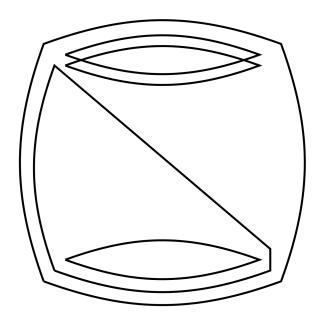
Next few slides:

- 1. Define key property for envy cycle distribution
- 2. Intuition behind the key property
- 3. Construction satisfying the key property

Envy graph: $(i \rightarrow j)$ if $v_i(X_i) < v_i(X_j)$

Distribution over envy cycles



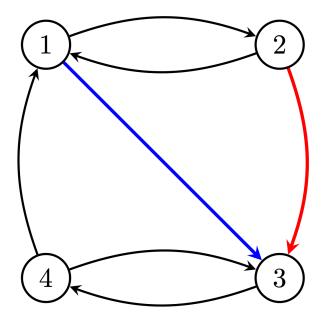


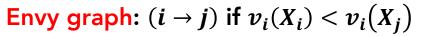
uniform distribution over 5 cycles

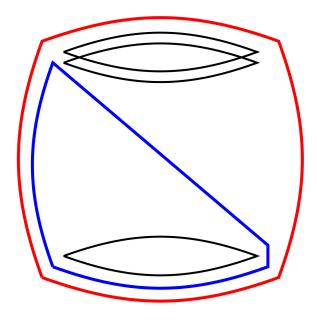
Key property:

If agents *i* and *j* both envy *k*, they are equally likely to get X_k .

example: agents 1 and 2 both envy 3, and they get X_3 with probability 1/5 each.





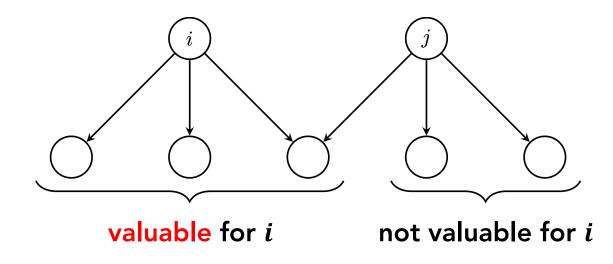


uniform distribution over 5 cycles

Key property:

If agents *i* and *j* both envy *k*, they are equally likely to get X_k .

Intuition: An envy cycles distribution satisfying key property is envy-free.



i is at least as likely as *j* to get any of the valuable bundles

Key property:

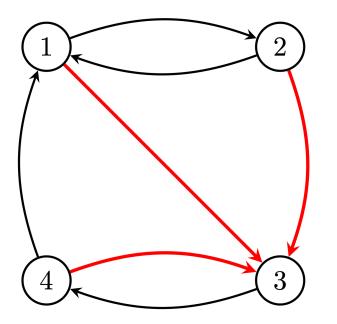
If agents *i* and *j* both envy *k*, they are equally likely to get X_k .

Stationary distribution of the random walk on the transposed envy graph

Key property:

If agents *i* and *j* both envy *k*, they are equally likely to get X_k .

Stationary distribution of the random walk on the transposed envy graph

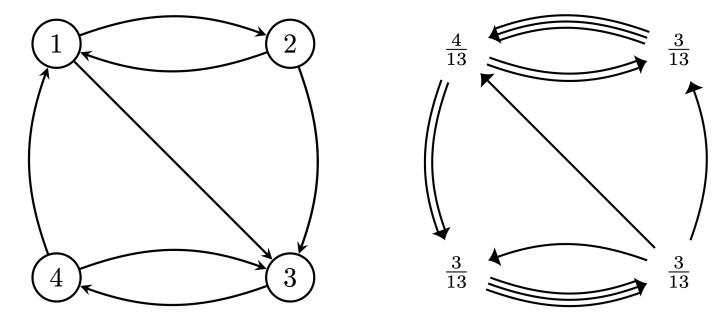


3 goes to 1, 2, 4 with probability 1/3 each

Key property:

If agents *i* and *j* both envy *k*, they are equally likely to get X_k .

Stationary distribution of the random walk on the transposed envy graph

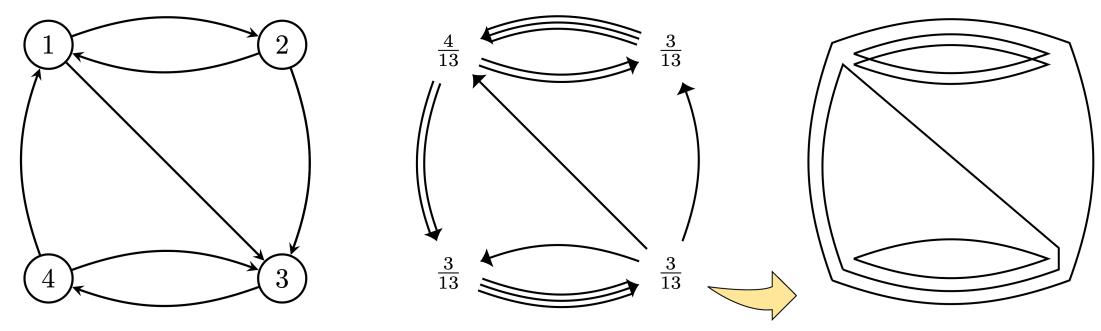


each edge = probability of 1/13

Key property:

If agents *i* and *j* both envy *k*, they are equally likely to get X_k .

Stationary distribution of the random walk on the transposed envy graph

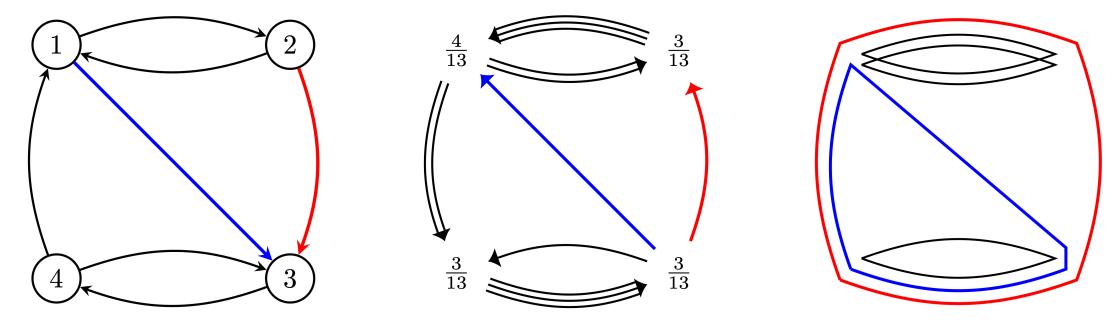


cycle decomposition by [MacQueen, 1981]

Key property:

If agents *i* and *j* both envy *k*, they are equally likely to get X_k .

Stationary distribution of the random walk on the transposed envy graph

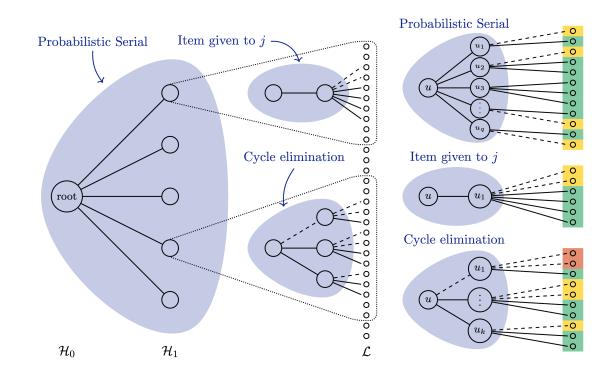


the key property holds because the random walk picks edges uniformly

Key property:

If agents *i* and *j* both envy *k*, they are equally likely to get X_k .

See the paper for the proof that key property implies ex-ante ½-EF



Open Problems

Main result:

Ex-ante $\frac{1}{2}$ -**EF** and **ex-post** $\frac{1}{2}$ -**EFX** + **EF1** exists for subadditive vals.

 $\left(\mathbb{E}[v_i(X_i)] \ge 1/2 \cdot \mathbb{E}[v_i(X_j)]\right) \quad \left(v_i(X_i) \ge 1/2 \cdot v_i(X_j - g) \text{ for all } g \in X_i\right) \quad \left(v_i(S \cup T) \le v_i(S) + v_i(T)\right)$

Open problem 1: Does ex-ante EF and ex-post EF1 exist for subadditive vals?

Can we randomize Envy Cycles to get ex-ante EF?

Open problem 2: Does ex-ante EF and ex-post EFX exist for additive vals?

Can we get a new impossibility result about EFX?

images: flaticon.com